Ion Interactions at the Mineral-water Interface During Biogeochemical Iron and Manganese Cycling

Ion Interactions at the Mineral-water Interface During Biogeochemical Iron and Manganese Cycling
Author: Margaret A. G. Hinkle
Publisher:
Total Pages: 0
Release: 2015
Genre:
ISBN:


Download Ion Interactions at the Mineral-water Interface During Biogeochemical Iron and Manganese Cycling Book in PDF, Epub and Kindle

The biogeochemical cycling of iron and manganese involves the reductive dissolution and oxidative precipitation of Fe(III) and Mn(IV/III) oxides. Biogenic Fe(III) and Mn(IV/III) oxides are often characterized by high surface areas and therefore high sorptive capacities. As a result, these minerals can substantially alter the chemistry of natural waters and the availability of micronutrients in soils and sediments by scavenging trace metals. Recent research indicates that the adsorption of aqueous Fe(II) onto Fe(III) oxides involves oxidative adsorption, electron transfer, and subsequent reductive dissolution at another surface site [a process collectively referred to as 'electron transfer-atom exchange' (ET-AE)]. Aqueous Mn(II) adsorption onto Mn(IV/III) oxides likely also involves oxidation, but because of the potential for Mn(II) Mn(IV) comproportionation reactions and the accessibility of nearly all atoms in Mn(IV/III) oxide sheets to reaction with aqueous solution, aqueous Mn(II)-solid Mn(IV/III) interactions are expected to differ substantially from the analogous Fe system. These complex interactions between reduced and oxidized forms of Fe (and Mn) occur at redox interfaces and can exert substantial effects on trace metal fate. These processes may, in turn, be affected by ions common in natural systems. The main objective of this dissertation is to determine how interactions between ions commonly present during biogeochemical Fe or Mn cycling in natural systems [e.g., phosphate, sulfate, Ni, Zn, Fe(II), or Mn(II)] alter one another's interactions with Fe and Mn oxide surfaces. This research specifically seeks to (1) identify the mechanisms through which the oxoanions phosphate and sulfate alter Fe(II) adsorption onto Fe oxides; (2) determine how oxoanion-Fe(II) interactions alter trace metal partitioning between the mineral surface, bulk mineral structure, and aqueous phase; (3) characterize the effect of Mn(II) on phyllomanganate sheet structures; and (4) examine the effect of Mn(II) on trace metal sorption on phyllomanganates. Macroscopic adsorption edges show that Fe(II) cooperatively co-adsorbs with sulfate and phosphate on Fe(III) oxide surfaces. Both attenuated total reflectance Fourier transform infrared spectroscopy and surface complexation modeling indicate that this cooperative adsorption behavior arises from a combination of ternary complexation and electrostatic interactions. The formation Fe(II)-oxoanion ternary complexes suggests that processes associated with Fe(II) Fe(III) ET-AE reactions may be altered in the presence of oxoanions, depending on the stability and identity of the ternary complex that forms. The effect of these oxoanions on one such process, trace metal repartitioning, was investigated in detail. Sulfate and, to a larger degree, phosphate suppress Ni cycling through hematite during Fe(II)-catalyzed recrystallization by altering Ni adsorption, structural incorporation, and release back into solution. Conversely, Ni cycling through goethite is unaffected or enhanced by phosphate and sulfate. This dissertation also investigated Mn(II) effects on phyllomanganate structure and the fate of associated trace metals. Powder X-ray diffraction and X-ray absorption fine structure spectroscopic measurements indicate that Mn(II) causes distortion of the sheet structure of Mn(IV/III) oxides and alters sheet stacking at low pH, but has a minimal effect on phyllomanganate structures at circumneutral pH. As a result, Ni and Zn adsorption mechanisms on phyllomanganates are altered in the presence of aqueous Mn(II) at pH 4, but exhibit few changes at pH 7. The Ni and Zn adsorption behaviors with aqueous Mn(II) suggests that Mn(II) alters phyllomanganate reactivities by decreasing phyllomanganate vacancy content. These results emphasize the importance of understanding adsorbate interactions in systems with coexisting reduced and oxidized Fe or Mn, as under such conditions Fe and Mn oxide minerals undergo dynamic structural transformations. Trace metal uptake and partitioning between Fe oxide surfaces can be altered in systems with appreciable amounts of phosphate or sulfate (e.g., riparian zones, estuaries, or marine sediments). The complex interactions at iron oxide surfaces must be considered when evaluating trace metal fate at redox interfaces or interpreting trace metal proxies in the rock record to reconstruct ancient water compositions. The Mn(II)-induced phyllomanganate structural changes observed here suggest a relationship between water composition and the reactivity of Mn oxides as adsorbent materials. The identified phyllomanganate restructuring may also modify the capacity of Mn oxides to serve as oxidants of inorganic and organic compounds in aquatic systems. This dissertation highlights the complex structural and chemical processes that occur via cooperative and competitive interactions of ion at iron and manganese oxide surfaces.

Interactions of C, N, P and S Biogeochemical Cycles and Global Change

Interactions of C, N, P and S Biogeochemical Cycles and Global Change
Author: Roland Wollast
Publisher: Springer Science & Business Media
Total Pages: 518
Release: 2013-06-29
Genre: Science
ISBN: 3642760643


Download Interactions of C, N, P and S Biogeochemical Cycles and Global Change Book in PDF, Epub and Kindle

This book is a natural extension of the SCOPE (Scientific Committee of Problems on the Environment) volumes on the carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) biogeochemical cycles and their interactions (Likens, 1981; Bolin and Cook, 1983). Substantial progress in the knowledge of these cycles has been made since publication of those volumes. In particular, the nature and extent of biological and inorganic interactions between these cycles have been identified, positive and negative feedbacks recognized and the relationship between the cycles and global environmental change preliminarily elucidated. In March 1991, a NATO Advanced Research Workshop was held for one week in Melreux, Belgium to reexamine the biogeochemical cycles of C, N, P and S on a variety of time and space scales from a holistic point of view. This book is the result of that workshop. The biogeochemical cycles of C, N, P and S are intimately tied to each other through biological productivity and subsequently to problems of global environmental change. These problems may be the most challenging facing humanity in the 21 st century. In the broadest sense, "global change" encompasses both changes to the status of the large, globally connected atmospheric, oceanic and terrestrial environments (e. g. tropospheric temperature increase) and change occurring as the result of nearly simultaneous local changes in many regions of the world (e. g. eutrophication).

Biogeochemical Cycling of Mineral-Forming Elements

Biogeochemical Cycling of Mineral-Forming Elements
Author: P.A. Trudinger
Publisher: Elsevier
Total Pages: 621
Release: 1979-01-01
Genre: Science
ISBN: 0080874622


Download Biogeochemical Cycling of Mineral-Forming Elements Book in PDF, Epub and Kindle

Biogeochemical Cycling of Mineral-Forming Elements

Mineral-water Interfacial Reactions

Mineral-water Interfacial Reactions
Author: Donald L. Sparks
Publisher:
Total Pages: 460
Release: 1998
Genre: Science
ISBN:


Download Mineral-water Interfacial Reactions Book in PDF, Epub and Kindle

Clearly explains how to more effectively decipher and predict contaminant fate in the environment by combining kinetic methods and molecular-scale spectroscopic and microscopic techniques to analyze mineral/water interfacial reactions in situ. The book begins with a broad overview, then continues with three sections written by internationally known expert. The first deals specifically with spectroscopic/microscopic techniques that can be used in combination with macroscopic approaches to glean mechanistic information on mineral/water reactions and processes. The second section emphasizes computer models that are used to elucidate surface mediated reaction mechanisms. The remainder of the volume is organized around reaction type, including sorption/desorption of inorganic species, sorption/desorption of organic species, precipitation/dissolution processes, heterogeneous electron transfer reactions, photochemically driven reactions, and microbially mediated reactions. Mineral-Water Interfacial Reactions will be a valuable resource for environmental scientists, geochemists, soil chemists, microbiologists, and marine engineers who need to be familiar with the most current and effective methods for testing and controlling the mobility, speciation, and bioavailability of contaminants in the environment.

Marine Geochemistry

Marine Geochemistry
Author: Horst D. Schulz
Publisher: Springer Science & Business Media
Total Pages: 583
Release: 2006-07-02
Genre: Science
ISBN: 3540321446


Download Marine Geochemistry Book in PDF, Epub and Kindle

Since 1980 a considerable amount of scientific research dealing with geochemical processes in marine sediments has been carried out. This textbook summarizes the state-of-the-art in this field of research providing a complete representation of the subject and including the most recent findings. The topics covered include the examination of sedimentological and physical properties of the sedimentary solid phase. A new chapter describes properties, occurrence and formation of gas hydrates in marine sediments. The textbook ends with a chapter on model conceptions and computer models to quantify processes of early diagenesis.

Environmental Mineralogy

Environmental Mineralogy
Author: J. D. Cotter-Howells
Publisher:
Total Pages: 440
Release: 2000
Genre: Environmental geochemistry
ISBN:


Download Environmental Mineralogy Book in PDF, Epub and Kindle