Introduction to Light Trapping in Solar Cell and Photo-detector Devices

Introduction to Light Trapping in Solar Cell and Photo-detector Devices
Author: Stephen J. Fonash
Publisher: Elsevier
Total Pages: 76
Release: 2014-09-15
Genre: Technology & Engineering
ISBN: 0124166377


Download Introduction to Light Trapping in Solar Cell and Photo-detector Devices Book in PDF, Epub and Kindle

New Approaches to Light Trapping in Solar Cell Devices discusses in detail the use of photonic and plasmonic effects for light trapping in solar cells. It compares and contrasts texturing, the current method of light-trapping design in solar cells, with emerging approaches employing photonic and plasmonic phenomena. These new light trapping methods reduce the amount of absorber required in a solar cell, promising significant cost reduction and efficiency. This book highlights potential advantages of photonics and plasmonics and describes design optimization using computer modeling of these approaches. Its discussion of ultimate efficiency possibilities in solar cells is grounded in a review of the Shockley-Queisser analysis; this includes an in-depth examination of recent analyses building on that seminal work.

Anti-reflection and Light Trapping in c-Si Solar Cells

Anti-reflection and Light Trapping in c-Si Solar Cells
Author: Chetan Singh Solanki
Publisher: Springer
Total Pages: 210
Release: 2017-06-30
Genre: Technology & Engineering
ISBN: 9811047715


Download Anti-reflection and Light Trapping in c-Si Solar Cells Book in PDF, Epub and Kindle

This book offers essential insights into c-Si based solar cells and fundamentals of reflection, refraction, and light trapping. The basic physics and technology for light trapping in c-Si based solar cells are covered, from traditional to advanced light trapping structures. Further, the book discusses the latest developments in plasmonics for c-Si solar cell applications, along with their future scope and the requirements for further research. The book offers a valuable guide for graduate students, researchers and professionals interested in the latest trends in solar cell technologies.

Light Trapping in Thin-film Solar Cells Using Dielectric and Metallic Nanostructures

Light Trapping in Thin-film Solar Cells Using Dielectric and Metallic Nanostructures
Author:
Publisher:
Total Pages: 143
Release: 2014
Genre:
ISBN: 9789077209851


Download Light Trapping in Thin-film Solar Cells Using Dielectric and Metallic Nanostructures Book in PDF, Epub and Kindle

"Photovoltaics (PV) is a sustainable and clean source of energy and the sun provides more than enough energy to make PV a major electricity source. To make PV fully competitive with conventional energy sources, a reduction of the cost per watt is required. This can be achieved by increasing the conversion efficiency of the modules or by decreasing manufacturing cost. Thin-film solar cells offer the potential for lower manufacturing costs. They can also serve as top cells in high-efficiency tandem solar cells. A major problem with thin-film solar cells is the incomplete absorption of the solar spectrum, which leads to a drastic reduction of the efficiency. To enhance the absorption of light in thin-film solar cells light trapping is required, in which nanostructures are integrated in the cell to enhance the path length of the light in the absorber layer. In this thesis we present new insights in light trapping in thin-film hydrogenated amorphous Si (a-Si:H) and Cu(In,Ga)Se2 (CIGSe) solar cells. We experimentally study arrays of metallic and dielectric resonant scatterers at the front and at the back side of thin-film solar cells, and demonstrate efficient light trapping without deterioration of the electrical properties of the devices. We emphasize the relevance of minimizing optical losses in the light trapping patterns. We compare periodic and random scattering patterns and demonstrate the importance of the spatial frequency distribution in the scattering patterns. We present an optimization of the spatial frequency distribution of light trapping patterns that is applicable to all thin-film solar cell types."-Samenvatting auteur.

Graphene for Post-Moore Silicon Optoelectronics

Graphene for Post-Moore Silicon Optoelectronics
Author: Yang Xu
Publisher: John Wiley & Sons
Total Pages: 197
Release: 2023-01-18
Genre: Technology & Engineering
ISBN: 3527841008


Download Graphene for Post-Moore Silicon Optoelectronics Book in PDF, Epub and Kindle

Graphene for Post-Moore Silicon Optoelectronics Provides timely coverage of an important research area that is highly relevant to advanced detection and control technology Projecting device performance beyond the scaling limits of Moore’s law requires technologies based on novel materials and device architecture. Due to its excellent electronic, thermal, and optical properties, graphene has emerged as a scalable, low-cost material with enormous integration possibilities for numerous optoelectronic applications. Graphene for Post-Moore Silicon Optoelectronics presents an up-to-date overview of the fundamentals, applications, challenges, and opportunities of integrating graphene and other 2D materials with silicon (Si) technologies. With an emphasis on graphene-silicon (Gr/Si) integrated devices in optoelectronics, this valuable resource also addresses emerging applications such as optoelectronic synaptic devices, optical modulators, and infrared image sensors. The book opens with an introduction to graphene for silicon optoelectronics, followed by chapters describing the growth, transfer, and physics of graphene/silicon junctions. Subsequent chapters each focus on a particular Gr/Si application, including high-performance photodetectors, solar energy harvesting devices, and hybrid waveguide devices. The book concludes by offering perspectives on the future challenges and prospects of Gr/Si optoelectronics, including the emergence of wafer-scale systems and neuromorphic optoelectronics. Illustrates the benefits of graphene-based electronics and hybrid device architectures that incorporate existing Si technology Covers all essential aspects of Gr/Si devices, including material synthesis, device fabrication, system integration, and related physics Summarizes current progress and future challenges of wafer-scale 2D-Si integrated optoelectronic devices Explores a wide range of Gr/Si devices, such as synaptic phototransistors, hybrid waveguide modulators, and graphene thermopile image sensors Graphene for Post-Moore Silicon Optoelectronics is essential reading for materials scientists, electronics engineers, and chemists in both academia and industry working with the next generation of Gr/Si devices.

Fundamentals of Solar Cell Design

Fundamentals of Solar Cell Design
Author: Inamuddin
Publisher: John Wiley & Sons
Total Pages: 578
Release: 2021-07-30
Genre: Science
ISBN: 1119725046


Download Fundamentals of Solar Cell Design Book in PDF, Epub and Kindle

Edited by one of the most well-respected and prolific engineers in the world and his team, this book provides a comprehensive overview of solar cells and explores the history of evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and other fundamentals of solar cell design. Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvested energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for its notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, and economy friendly and operational costs. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization, analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents. This outstanding new volume: Provides state-of-the-art information about solar cells Is a unique reference guide for researchers in solar energy Includes novel innovations in the field of solar cell technology Audience: This book is a unique reference guide that can be used by faculty, students, researchers, engineers, device designers and industrialists who are working and learning in the fields of semiconductors, chemistry, physics, electronics, light science, material science, flexible energy conversion, industrial, and renewable energy sectors..

Solar Cells and Light Management

Solar Cells and Light Management
Author: Francesco Enrichi
Publisher: Elsevier
Total Pages: 556
Release: 2019-10-29
Genre: Technology & Engineering
ISBN: 0081028733


Download Solar Cells and Light Management Book in PDF, Epub and Kindle

Solar Cells and Light Management: Materials, Strategies and Sustainability provides an extensive review on the latest advances in PV materials, along with light management strategies for better exploiting the solar spectrum. Following a brief review of the current status of solar cells, the book discusses different concepts, principles and technologies for solar devices, starting with standard silicon cells and then covering organic-hybrid, DSSC, perovskite, quantum dots and nanostructured oxide solar cells. Other sections focus on light manipulation and spectral modification, materials for spectral conversion, and environmental and sustainably considerations. An emergy analysis, which is an extension of the Life Cycle Assessment methodology, is applied to the study of solar PV systems, thus allowing for effective integrated indicators. Provides a comprehensive picture of light management strategies Features the most recent advances in the field, including novel materials and advanced solar cell technologies Presents a resource that is applicable to both new or experienced researchers in the field Contains a section on environmental and sustainability issues