InSAR Observations of Ground Deformation

InSAR Observations of Ground Deformation
Author: Amy Laura Parker
Publisher: Springer
Total Pages: 176
Release: 2016-10-14
Genre: Nature
ISBN: 3319390341


Download InSAR Observations of Ground Deformation Book in PDF, Epub and Kindle

This doctoral thesis applies measurements of ground deformation from satellite radar using their potential to play a key role in understanding volcanic and magmatic processes throughout the eruption cycle. However, making these measurements is often problematic, and the processes driving ground deformation are commonly poorly understood. These problems are approached in this thesis in the context of the Cascades Volcanic Arc. From a technical perspective, the thesis develops a new way of using regional-scale weather models to assess a priori the influence of atmospheric uncertainties on satellite measurements of volcano deformation, providing key parameters for volcano monitoring. Next, it presents detailed geodetic studies of two volcanoes in northern California: Medicine Lake Volcano and Lassen Volcanic Centre. Finally, the thesis combines geodetic constraints with petrological inputs to develop a thermal model of cooling magma intrusions. The novelty and range of topics covered in this thesis mean that it is a seminal work in volcanic and magmatic studies.

Volcano Deformation

Volcano Deformation
Author: Daniel Dzurisin
Publisher: Springer Science & Business Media
Total Pages: 470
Release: 2006-11-24
Genre: Science
ISBN: 3540493026


Download Volcano Deformation Book in PDF, Epub and Kindle

Volcanoes and eruptions are dramatic surface man telemetry and processing, and volcano-deformation ifestations of dynamic processes within the Earth, source models over the past three decades. There has mostly but not exclusively localized along the been a virtual explosion of volcano-geodesy studies boundaries of Earth's relentlessly shifting tectonic and in the modeling and interpretation of ground plates. Anyone who has witnessed volcanic activity deformation data. Nonetheless, other than selective, has to be impressed by the variety and complexity of brief summaries in journal articles and general visible eruptive phenomena. Equally complex, works on volcano-monitoring and hazards mitiga however, if not even more so, are the geophysical, tion (e. g. , UNESCO, 1972; Agnew, 1986; Scarpa geochemical, and hydrothermal processes that occur and Tilling, 1996), a modern, comprehensive treat underground - commonly undetectable by the ment of volcano geodesy and its applications was human senses - before, during, and after eruptions. non-existent, until now. Experience at volcanoes worldwide has shown that, In the mid-1990s, when Daniel Dzurisin (DZ to at volcanoes with adequate instrumental monitor friends and colleagues) was serving as the Scientist ing, nearly all eruptions are preceded and accom in-Charge of the USGS Cascades Volcano Observa panied by measurable changes in the physical and tory (CVO), I first learned of his dream to write a (or) chemical state of the volcanic system. While book on volcano geodesy.

Spatial Analysis, Modelling and Planning

Spatial Analysis, Modelling and Planning
Author: Jorge Rocha
Publisher: BoD – Books on Demand
Total Pages: 270
Release: 2018-11-28
Genre: Science
ISBN: 1789842395


Download Spatial Analysis, Modelling and Planning Book in PDF, Epub and Kindle

New powerful technologies, such as geographic information systems (GIS), have been evolving and are quickly becoming part of a worldwide emergent digital infrastructure. Spatial analysis is becoming more important than ever because enormous volumes of spatial data are available from different sources, such as social media and mobile phones. When locational information is provided, spatial analysis researchers can use it to calculate statistical and mathematical relationships through time and space. This book aims to demonstrate how computer methods of spatial analysis and modeling, integrated in a GIS environment, can be used to better understand reality and give rise to more informed and, thus, improved planning. It provides a comprehensive discussion of spatial analysis, methods, and approaches related to planning.

Geodetic Imaging of Tectonic Deformation with InSAR.

Geodetic Imaging of Tectonic Deformation with InSAR.
Author: Heresh Fattahi
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN:


Download Geodetic Imaging of Tectonic Deformation with InSAR. Book in PDF, Epub and Kindle

Precise measurements of ground deformation across the plate boundaries are crucial observations to evaluate the location of strain localization and to understand the pattern of strain accumulation at depth. Such information can be used to evaluate the possible location and magnitude of future earthquakes. Interferometric Synthetic Aperture Radar (InSAR) potentially can deliver small-scale (few mm/yr) ground displacement over long distances (hundreds of kilometers) across the plate boundaries and over continents. However, Given the ground displacement as our signal of interest, the InSAR observations of ground deformation are usually affected by several sources of systematic and random noises. In this dissertation I identify several sources of systematic and random noise, develop new methods to model and mitigate the systematic noise and to evaluate the uncertainty of the ground displacement measured with InSAR. I use the developed approach to characterize the tectonic deformation and evaluate the rate of strain accumulation along the Chaman fault system, the western boundary of the India with Eurasia tectonic plates. I evaluate the bias due to the topographic residuals in the InSAR range-change time-series and develope a new method to estimate the topographic residuals and mitigate the effect from the InSAR range-change time-series (Chapter 2). I develop a new method to evaluate the uncertainty of the InSAR velocity field due to the uncertainty of the satellite orbits (Chapter 3) and a new algorithm to automatically detect and correct the phase unwrapping errors in a dense network of interferograms (Chapter 4). I develop a new approach to evaluate the impact of systematic and stochastic components of the tropospheric delay on the InSAR displacement time-series and its uncertainty (Chapter 5). Using the new InSAR time-series approach developed in the previous chapters, I study the tectonic deformation across the western boundary of the India plate with Eurasia and evaluated the rate of strain accumulation along the Chaman fault system (Chapter 5). I also evaluate the co-seismic and post-seismic displacement of a moderate M5.5 earthquake on the Ghazaband fault (Chapter 6). The developed methods to mitigate the systematic noise from InSAR time-series, significantly improve the accuracy of the InSAR displacement time-series and velocity. The approaches to evaluate the effect of the stochastic components of noise in InSAR displacement time-series enable us to obtain the variance-covariance matrix of the InSAR displacement time-series and to express their uncertainties. The effect of the topographic residuals in the InSAR range-change time-series is proportional to the perpendicular baseline history of the set of SAR acquisitions. The proposed method for topographic residual correction, efficiently corrects the displacement time-series. Evaluation of the uncertainty of velocity due to the orbital errors shows that for modern SAR satellites with precise orbits such as TerraSAR-X and Sentinel-1, the uncertainty of 0.2 mm/yr per 100 km and for older satellites with less accurate orbits such as ERS and Envisat, the uncertainty of 1.5 and 0.5mm/yr per 100 km, respectively are achievable. However, the uncertainty due to the orbital errors depends on the orbital uncertainties, the number and time span of SAR acquisitions. Contribution of the tropospheric delay to the InSAR range-change time-series can be subdivided to systematic (seasonal delay) and stochastic components. The systematic component biases the displacement times-series and velocity field as a function of the acquisition time and the non-seasonal component significantly contributes to the InSAR uncertainty. Both components are spatially correlated and therefore the covariance of noise between pixels should be considered for evaluating the uncertainty due to the random tropospheric delay. The relative velocity uncertainty due to the random tropospheric delay depends on the scatter of the random tropospheric delay, and is inversely proportional to the number of acquisitions, and the total time span covered by the SAR acquisitions. InSAR observations across the Chaman fault system shows that relative motion between India and Eurasia in the western boundary is distributed among different faults. The InSAR velocity field indicates strain localization on the Chaman fault and Ghazaband fault with slip rates of ~8 and ~16 mm/yr, respectively. High rate of strain accumulation on the Ghazaband fault and lack of evidence for rupturing the fault during the 1935 Quetta earthquake indicates that enough strain has been accumulated for large (M>7) earthquake, which threatens Balochistan and the City of Quetta. Chaman fault from latitudes ~29.5 N to ~32.5 N is creeping with a maximum surface creep rate of 8 mm/yr, which indicates that Chaman fault is only partially locked and therefore moderate earthquakes (M

Radar Interferometry

Radar Interferometry
Author: Ramon F. Hanssen
Publisher: Springer Science & Business Media
Total Pages: 318
Release: 2006-04-18
Genre: Technology & Engineering
ISBN: 0306476339


Download Radar Interferometry Book in PDF, Epub and Kindle

This book is the product of five and a half years of research dedicated to the und- standing of radar interferometry, a relatively new space-geodetic technique for m- suring the earth’s topography and its deformation. The main reason for undertaking this work, early 1995, was the fact that this technique proved to be extremely useful for wide-scale, fine-resolution deformation measurements. Especially the interf- ometric products from the ERS-1 satellite provided beautiful first results—several interferometric images appeared as highlights on the cover of journals such as Nature and Science. Accuracies of a few millimeters in the radar line of sight were claimed in semi-continuous image data acquired globally, irrespective of cloud cover or solar illumination. Unfortunately, because of the relative lack of supportive observations at these resolutions and accuracies, validation of the precision and reliability of the results remained an issue of concern. From a geodetic point of view, several survey techniques are commonly available to measure a specific geophysical phenomenon. To make an optimal choice between these techniques it is important to have a uniform and quantitative approach for describing the errors and how these errors propagate to the estimated parameters. In this context, the research described in this book was initiated. It describes issues involved with different types of errors, induced by the sensor, the data processing, satellite positioning accuracy, atmospheric propagation, and scattering character- tics. Nevertheless, as the first item in the subtitle “Data Interpretation and Error Analysis” suggests, data interpretation is not always straightforward.

InSAR Imaging of Aleutian Volcanoes

InSAR Imaging of Aleutian Volcanoes
Author: Zhong Lu
Publisher: Springer Science & Business Media
Total Pages: 411
Release: 2014-03-31
Genre: Science
ISBN: 3642003486


Download InSAR Imaging of Aleutian Volcanoes Book in PDF, Epub and Kindle

Interferometric synthetic aperture radar (InSAR) is a relatively new remote sensing tool that is capable of measuring ground-surface deformation with centimeter-to-subcentimeter precision at a spatial resolution of tens of meters over an area of hundreds to thousands of square kilometers. With its global coverage and all-weather imaging capability, InSAR has become an increasingly important technique for studying volcanoes in remote regions such as the Aleutian Islands. The spatial distribution of surface deformation data derived from InSAR images enables the construction of detailed mechanical models to enhance the study of magmatic processes. InSAR Imaging of Aleutian Volcanoes: • Provides a theoretical framework for InSAR observations and capabilities • Discusses state-of-the-art InSAR analysis techniques • Describes the structure, eruptive history, and magma composition of volcanoes along the entire Aleutian arc • Presents conceptual models for the magma plumbing systems of Aleutian volcanoes based on InSAR results combined with geophysical, geological and geochemical observations. • Synthesizes observations of deformation along the Aleutian arc and compares those results to other active arcs around the world. • Is illustrated throughout with high-resolution color satellite radar images

Satellite Radar Interferometry

Satellite Radar Interferometry
Author: V. B. H. (Gini) Ketelaar
Publisher: Springer Science & Business Media
Total Pages: 252
Release: 2009-04-07
Genre: Technology & Engineering
ISBN: 1402094280


Download Satellite Radar Interferometry Book in PDF, Epub and Kindle

This book investigates the applicability of satellite radar interferometry (InSAR) for deformation monitoring. The presented methodologies are demonstrated in an integrated way for the entire northern part of the Netherlands and a part of Germany.

Advances in Remote Sensing for Infrastructure Monitoring

Advances in Remote Sensing for Infrastructure Monitoring
Author: Vernon Singhroy
Publisher: Springer Nature
Total Pages: 366
Release: 2020-12-23
Genre: Technology & Engineering
ISBN: 3030591093


Download Advances in Remote Sensing for Infrastructure Monitoring Book in PDF, Epub and Kindle

This volume provides international case studies of practical and advanced methods using satellite images integrated with other airborne, drone images and field data to monitor infrastructure. The book is timely, as infrastructure spending by national governments is increasing and robust monitoring techniques are needed to keep pace with climate change impacts affecting infrastructures globally. The expert international contributions that comprise the book provide examples of advanced methods using InSAR, high-resolution optical and radar images, LIDAR, UAV, geophysical techniques and their applications to civil infrastructure. The case studies focus on high-resolution, rapid time-series radar interferometry to monitor highways, railways, pipelines, bridges, urban, and water conveyance infrastructures. Other case studies use optical and radar images to characterize urban infrastructure and monitor damages from floods, oil spills and conflicts. The case studies are global focusing on infrastructure projects in Canada, Dominica Guyana, India Italy, Syria Taiwan, United States and the United Kingdom. This compilation of selected case studies will provide useful guidelines for the civil infrastructure characterization and monitoring communities. The book will be of interest to infrastructure consultants and professionals, scientific communities in earth observation and advanced imaging methods, and researchers and professors in earth sciences, climate change, and civil and geoengineering.

Surface Deformation Measured with Interferometric Synthetic Aperture Radar

Surface Deformation Measured with Interferometric Synthetic Aperture Radar
Author: Fernando Greene
Publisher:
Total Pages:
Release: 2014
Genre:
ISBN:


Download Surface Deformation Measured with Interferometric Synthetic Aperture Radar Book in PDF, Epub and Kindle

Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) is widely used to detect ground deformation from varieties of geophysical origins. However, most studies lack the spatial and temporal resolutions to better characterize such observations. The purpose of this research is to use multi-track satellite radar imagery to generate time series to study and monitor vertical ground deformation over large regions such as the Nevada portion of the Basin and Range Province and the western end of the Mojave Desert. We developed an innovative method to remove horizontal movements from InSAR line-of-sight (LOS) observations using a GPS velocity field and subsequently combine the multi-track imagery resulting in one single high spatial resolution map of observed vertical crustal and surface movements. By implementing this technique we detect vertical deformation signals with short and intermediate wavelength signals associated to tectonic processes such as interseismic and postseismic deformation. In Central Nevada Seismic Belt we detect in three independent orbits a broad area of uplift that confirms results of previous studies that associate the origin of this signal to post-seimic deformation of the historic earthquakes at this region. In south-central Nevada we detect several valleys that show a gradual eastward tilt of the valley floors due to deep geodynamical processes. The valleys located at the eastern side of Ruby Mountains show a range decrease that could indicate uplift related to magma intrusion or post-seismic deformation due to older, unrecognized earthquakes. In the Big Bend segment in southern California we detect vertical uplift as expected by mechanical models of interseismic deformation. Additionaly all our velocity maps reveal small wavelength deformation signals of anthropogenic origin.

Geospatial Technology for Environmental Hazards

Geospatial Technology for Environmental Hazards
Author: Pravat Kumar Shit
Publisher: Springer Nature
Total Pages: 594
Release: 2021-12-02
Genre: Science
ISBN: 303075197X


Download Geospatial Technology for Environmental Hazards Book in PDF, Epub and Kindle

The book demonstrates the geospatial technology approach to data mining techniques, data analysis, modeling, risk assessment, visualization, and management strategies in different aspects of natural and social hazards. This book has 25 chapters associated with risk assessment, mapping and management strategies of environmental hazards. It covers major topics such as Landslide Susceptibility, Arsenic Contaminated Groundwater, Earthquake Risk Management, Open Cast Mining, Soil loss, Flood Susceptibility, Forest Fire Risk, Malaria prevalence, Flood inundation, Socio-Economic Vulnerability, River Bank Erosion, and Socio-Economic Vulnerability. The content of this book will be of interest to researchers, professionals, and policymakers, whose work involves environmental hazards and related solutions.