Circuits and Applications Using Silicon Heterostructure Devices

Circuits and Applications Using Silicon Heterostructure Devices
Author: John D. Cressler
Publisher: CRC Press
Total Pages: 360
Release: 2018-10-03
Genre: Technology & Engineering
ISBN: 1420066951


Download Circuits and Applications Using Silicon Heterostructure Devices Book in PDF, Epub and Kindle

No matter how you slice it, semiconductor devices power the communications revolution. Skeptical? Imagine for a moment that you could flip a switch and instantly remove all the integrated circuits from planet Earth. A moment’s reflection would convince you that there is not a single field of human endeavor that would not come to a grinding halt, be it commerce, agriculture, education, medicine, or entertainment. Life, as we have come to expect it, would simply cease to exist. Drawn from the comprehensive and well-reviewed Silicon Heterostructure Handbook, this volume covers SiGe circuit applications in the real world. Edited by John D. Cressler, with contributions from leading experts in the field, this book presents a broad overview of the merits of SiGe for emerging communications systems. Coverage spans new techniques for improved LNA design, RF to millimeter-wave IC design, SiGe MMICs, SiGe Millimeter-Wave ICs, and wireless building blocks using SiGe HBTs. The book provides a glimpse into the future, as envisioned by industry leaders.

Design and Modeling of Clock and Data Recovery Integrated Circuit in 130 Nm CMOS Technology for 10 Gb

Design and Modeling of Clock and Data Recovery Integrated Circuit in 130 Nm CMOS Technology for 10 Gb
Author: Maher Assaad
Publisher:
Total Pages:
Release: 2009
Genre:
ISBN:


Download Design and Modeling of Clock and Data Recovery Integrated Circuit in 130 Nm CMOS Technology for 10 Gb Book in PDF, Epub and Kindle

Abstract This thesis describes the design and implementation of a fully monolithic 10 Gb/s phase and frequency-locked loop based clock and data recovery (PFLL-CDR) integrated circuit, as well as the Verilog-A modeling of an asynchronous serial link based chip to chip communication system incorporating the proposed concept. The proposed design was implemented and fabricated using the 130 nm CMOS technology offered by UMC (United Microelectronics Corporation). Different PLL-based CDR circuits topologies were investigated in terms of architecture and speed. Based on the investigation, we proposed a new concept of quarter-rate (i.e. the clocking speed in the circuit is 2.5 GHz for 10 Gb/s data rate) and dual-loop topology which consists of phase-locked and frequency-locked loop. The frequency-locked loop (FLL) operates independently from the phase-locked loop (PLL), and has a highly-desired feature that once the proper frequency has been acquired, the FLL is automatically disabled and the PLL will take over to adjust the clock edges approximately in the middle of the incoming data bits for proper sampling. Another important feature of the proposed quarter-rate concept is the inherent 1-to-4 demultiplexing of the input serial data stream. A new quarter-rate phase detector based on the non-linear early-late phase detector concept has been used to achieve the multi-Giga bit/s speed and to eliminate the need of the front-end data pre-processing (edge detecting) units usually associated with the conventional CDR circuits. An eight-stage differential ring oscillator running at 2.5 GHz frequency center was used for the voltage-controlled oscillator (VCO) to generate low-jitter multi-phase clock signals. The transistor level simulation results demonstrated excellent performances in term of locking speed and power consumption. In order to verify the accuracy of the proposed quarter-rate concept, a clockless asynchronous serial link incorporating the proposed concept and communicating two chips at 10 Gb/s has been modelled at gate level using the Verilog-A language and time-domain simulated.

High Speed Serdes Devices and Applications

High Speed Serdes Devices and Applications
Author: David Robert Stauffer
Publisher: Springer Science & Business Media
Total Pages: 495
Release: 2008-12-19
Genre: Technology & Engineering
ISBN: 038779834X


Download High Speed Serdes Devices and Applications Book in PDF, Epub and Kindle

The simplest method of transferring data through the inputs or outputs of a silicon chip is to directly connect each bit of the datapath from one chip to the next chip. Once upon a time this was an acceptable approach. However, one aspect (and perhaps the only aspect) of chip design which has not changed during the career of the authors is Moore’s Law, which has dictated substantial increases in the number of circuits that can be manufactured on a chip. The pin densities of chip packaging technologies have not increased at the same pace as has silicon density, and this has led to a prevalence of High Speed Serdes (HSS) devices as an inherent part of almost any chip design. HSS devices are the dominant form of input/output for many (if not most) high-integration chips, moving serial data between chips at speeds up to 10 Gbps and beyond. Chip designers with a background in digital logic design tend to view HSS devices as simply complex digital input/output cells. This view ignores the complexity associated with serially moving billions of bits of data per second. At these data rates, the assumptions associated with digital signals break down and analog factors demand consideration. The chip designer who oversimplifies the problem does so at his or her own peril.

High-Speed Clock Network Design

High-Speed Clock Network Design
Author: Qing K. Zhu
Publisher: Springer Science & Business Media
Total Pages: 191
Release: 2013-03-14
Genre: Technology & Engineering
ISBN: 147573705X


Download High-Speed Clock Network Design Book in PDF, Epub and Kindle

High-Speed Clock Network Design is a collection of design concepts, techniques and research works from the author for clock distribution in microprocessors and high-performance chips. It is organized in 11 chapters.

Design of Clock Data Recovery Integrated Circuit for High Speed Data Communication Systems

Design of Clock Data Recovery Integrated Circuit for High Speed Data Communication Systems
Author: Jinghua Li
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:


Download Design of Clock Data Recovery Integrated Circuit for High Speed Data Communication Systems Book in PDF, Epub and Kindle

Demand for low cost Serializer and De-serializer (SerDes) integrated circuits has increased due to the widespread use of Synchronous Optical Network (SONET)/Gigabit Ethernet network and chip-to-chip interfaces such as PCI-Express (PCIe), Serial ATA(SATA) and Fibre channel standard applications. Among all these applications, clock data recovery (CDR) is one of the key design components. With the increasing demand for higher bandwidth and high integration. Complementary metal-oxidesemiconductor (CMOS) implementation is now a design trend for the predominant products in this research work, a fully integrated 10Gb/s (OC-192) CDR architecture in standard 0.18 um CMOS is developed. The proposed architecture integrates the typically large off-chip filter capacitor by using two feed-forward paths configuration to generate the required zero and poles and satisfies SONET jitter requirements with a total power dissipation (including the buffers) of 290mW. The chip exceeds SONET OC-192 jitter tolerance mask, and high frequency jitter tolerance is over 0.31 UIpp by applying PRBS data with a pattern length of 231-1. The implementation is the first fully integrated 10Gb/s CDR IC which meets/exceeds the SONET standard in the literature. The second proposed CDR architecture includes an adaptive bang-bang control algorithm. For 6MHz sinusoidal jitter modulation, the new architecture reduces the tracking error to 11.4ps peak-to-peak, versus that of 19.7ps of the conventional bangbang CDR. The main contribution of the proposed architecture is that it optimizes the loop dynamics by adjusting the bang-bang bandwidth adaptively to minimize the steady state jitter of the CDR, which leads to an improved jitter tolerance performance. According to simulation, the jitter performance is improved by more than 0.04UI, which alleviates the stringent 0.1UI peak to peak jitter requirements in the PCIe/Fibre channel/Sonet Standard.

Low Power Clock and Data Recovery Integrated Circuits

Low Power Clock and Data Recovery Integrated Circuits
Author: Shahab Ardalan
Publisher:
Total Pages: 121
Release: 2007
Genre:
ISBN:


Download Low Power Clock and Data Recovery Integrated Circuits Book in PDF, Epub and Kindle

Advances in technology and the introduction of high speed processors have increased the demand for fast, compact and commercial methods for transferring large amounts of data. The next generation of the communication access network will use optical fiber as a media for data transmission to the subscriber. In optical data or chip-to-chip data communication, the continuous received data needs to be converted to discrete data. For the conversion, a synchronous clock and data are required. A clock and data recovery (CDR) circuit recovers the phase information from the data and generates the in-phase clock and data. In this dissertation, two clock and data recovery circuits for Giga-bits per second (Gbps) serial data communication are designed and fabricated in 180nm and 90nm CMOS technology. The primary objective was to reduce the circuit power dissipation for multi-channel data communication applications. The power saving is achieved using low swing voltage signaling scheme. Furthermore, a novel low input swing Alexander phase detector is introduced. The proposed phase detector reduces the power consumption at the transmitter and receiver blocks. The circuit demonstrates a low power dissipation of 340[mu]W/Gbps in 90nm CMOS technology. The CDR is able to recover the input signal swing of 35mVp. The peak-to-peak jitter is 21ps and RMS jitter is 2.5ps. Total core area excluding pads is approximately 0.01mm2.

Timing Optimization Through Clock Skew Scheduling

Timing Optimization Through Clock Skew Scheduling
Author: Ivan S. Kourtev
Publisher: Springer
Total Pages: 0
Release: 2012-10-03
Genre: Technology & Engineering
ISBN: 9781461369851


Download Timing Optimization Through Clock Skew Scheduling Book in PDF, Epub and Kindle

History of the Book The last three decades have witnessed an explosive development in integrated circuit fabrication technologies. The complexities of cur rent CMOS circuits are reaching beyond the 100 nanometer feature size and multi-hundred million transistors per integrated circuit. To fully exploit this technological potential, circuit designers use sophisticated Computer-Aided Design (CAD) tools. While supporting the talents of innumerable microelectronics engineers, these CAD tools have become the enabling factor responsible for the successful design and implemen tation of thousands of high performance, large scale integrated circuits. This research monograph originated from a body of doctoral disserta tion research completed by the first author at the University of Rochester from 1994 to 1999 while under the supervision of Prof. Eby G. Friedman. This research focuses on issues in the design of the clock distribution net work in large scale, high performance digital synchronous circuits and particularly, on algorithms for non-zero clock skew scheduling. During the development of this research, it has become clear that incorporating timing issues into the successful integrated circuit design process is of fundamental importance, particularly in that advanced theoretical de velopments in this area have been slow to reach the designers' desktops.