High-dimensional Convolutional Neural Networks for 3D Perception

High-dimensional Convolutional Neural Networks for 3D Perception
Author: Christopher Bongsoo Choy
Publisher:
Total Pages:
Release: 2020
Genre:
ISBN:


Download High-dimensional Convolutional Neural Networks for 3D Perception Book in PDF, Epub and Kindle

The automation of mechanical tasks brought the modern world unprecedented prosperity and comfort. However, the majority of automated tasks have been simple mechanical tasks that only require repetitive motion. Tasks that require visual perception and high-level cognition still have become the last frontiers of automation. Many of these tasks require visual perception such as automated warehouses where robots package items in disarray, autonomous driving where autonomous agents localize themselves, identify and track other dynamic objects in the 3D world. This ability to represent, identify, and interpret visual three-dimensional data to understand the underlying three-dimensional structure in the real world is known as 3D perception. In this dissertation, we propose learning-based approaches to tackle challenges in 3D perception. Specifically, we propose a set of high-dimensional convolutional neural networks for three categories of problems in 3D perception: reconstruction, representation learning, and registration. Reconstruction is the first step that generates 3D point clouds or meshes from a set of sensory inputs. We present supervised reconstruction methods using 3D convolutional neural networks that take a set of images as input and generate 3D occupancy patterns in a grid as output. We train the networks with a large-scale 3D shape dataset to generate a set of images rendered from various viewpoints validate the approach on real image datasets. However, supervised reconstruction requires 3D shapes as labels for all images, which are expensive to generate. Instead, we propose using a set of foreground masks and unlabeled real 3D shapes to train the reconstruction network as weaker supervision. Combined with the learned constraint, we train the reconstruction system with as few as 1 image and show that the proposed model without direct 3D supervision. In the second part of the dissertation, we present sparse tensor networks, neural networks for spatially sparse tensors. As we increase the spatial dimension, the sparsity of input data decreases drastically as the volume of the space increases exponentially. Sparse tensor networks exploit such inherent sparsity in the input data and efficiently process them. With the sparse tensor network, we create a 4-dimensional convolutional network for spatio-temporal perception for 3D scans or a sequence of 3D scans (3D video). We show that 4-dimensional convolutional neural networks can effectively make use of temporal consistency and improve the accuracy of segmentation. Next, we use the sparse tensor networks for geometric representation learning to capture both local and global 3D structures accurately for correspondences and registration. We propose fully convolutional networks and new types of metric learning losses that allow neurons to capture large context while capturing local spatial geometry. We experimentally validate our approach on both indoor and outdoor datasets and show that the network outperforms the state-of-the-art method while being a few orders of magnitude faster. In the third and the last part of the dissertation, we discuss high-dimensional pattern recognition problems in image and 3D registration. We first propose high-dimensional convolutional networks from 4 to 32-dimensional spaces and analyze the geometric pattern recognition capacity of these high-dimensional convolutional networks for linear regression problems. Next, we show that the 3D correspondences form a hyper-surface in 6-dimensional space; and 2D correspondences form a 4-dimensional hyper-conic section, which we detect using high-dimensional convolutional networks. We extend the proposed high-dimensional convolutional networks for differentiable 3D registration and propose three core modules for this: a 6-dimensional convolutional neural network for correspondence confidence prediction; a differentiable Weighted Procrustes method for closed-form pose estimation; and a robust gradient-based 3D rigid transformation optimizer for pose refinement. Experiments demonstrate that our approach outperforms state-of-the-art learning-based and classical methods on real-world data while maintaining efficiency.

A Guide to Convolutional Neural Networks for Computer Vision

A Guide to Convolutional Neural Networks for Computer Vision
Author: Salman Khan
Publisher: Springer Nature
Total Pages: 187
Release: 2022-06-01
Genre: Computers
ISBN: 3031018214


Download A Guide to Convolutional Neural Networks for Computer Vision Book in PDF, Epub and Kindle

Computer vision has become increasingly important and effective in recent years due to its wide-ranging applications in areas as diverse as smart surveillance and monitoring, health and medicine, sports and recreation, robotics, drones, and self-driving cars. Visual recognition tasks, such as image classification, localization, and detection, are the core building blocks of many of these applications, and recent developments in Convolutional Neural Networks (CNNs) have led to outstanding performance in these state-of-the-art visual recognition tasks and systems. As a result, CNNs now form the crux of deep learning algorithms in computer vision. This self-contained guide will benefit those who seek to both understand the theory behind CNNs and to gain hands-on experience on the application of CNNs in computer vision. It provides a comprehensive introduction to CNNs starting with the essential concepts behind neural networks: training, regularization, and optimization of CNNs. The book also discusses a wide range of loss functions, network layers, and popular CNN architectures, reviews the different techniques for the evaluation of CNNs, and presents some popular CNN tools and libraries that are commonly used in computer vision. Further, this text describes and discusses case studies that are related to the application of CNN in computer vision, including image classification, object detection, semantic segmentation, scene understanding, and image generation. This book is ideal for undergraduate and graduate students, as no prior background knowledge in the field is required to follow the material, as well as new researchers, developers, engineers, and practitioners who are interested in gaining a quick understanding of CNN models.

A Guide to Convolutional Neural Networks for Computer Vision

A Guide to Convolutional Neural Networks for Computer Vision
Author: Salman Khan
Publisher: Morgan & Claypool Publishers
Total Pages: 284
Release: 2018-02-13
Genre: Computers
ISBN: 1681732823


Download A Guide to Convolutional Neural Networks for Computer Vision Book in PDF, Epub and Kindle

Computer vision has become increasingly important and effective in recent years due to its wide-ranging applications in areas as diverse as smart surveillance and monitoring, health and medicine, sports and recreation, robotics, drones, and self-driving cars. Visual recognition tasks, such as image classification, localization, and detection, are the core building blocks of many of these applications, and recent developments in Convolutional Neural Networks (CNNs) have led to outstanding performance in these state-of-the-art visual recognition tasks and systems. As a result, CNNs now form the crux of deep learning algorithms in computer vision. This self-contained guide will benefit those who seek to both understand the theory behind CNNs and to gain hands-on experience on the application of CNNs in computer vision. It provides a comprehensive introduction to CNNs starting with the essential concepts behind neural networks: training, regularization, and optimization of CNNs. The book also discusses a wide range of loss functions, network layers, and popular CNN architectures, reviews the different techniques for the evaluation of CNNs, and presents some popular CNN tools and libraries that are commonly used in computer vision. Further, this text describes and discusses case studies that are related to the application of CNN in computer vision, including image classification, object detection, semantic segmentation, scene understanding, and image generation. This book is ideal for undergraduate and graduate students, as no prior background knowledge in the field is required to follow the material, as well as new researchers, developers, engineers, and practitioners who are interested in gaining a quick understanding of CNN models.

Computer Vision – ECCV 2022

Computer Vision – ECCV 2022
Author: Shai Avidan
Publisher: Springer Nature
Total Pages: 811
Release: 2022-11-10
Genre: Computers
ISBN: 3031200624


Download Computer Vision – ECCV 2022 Book in PDF, Epub and Kindle

The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

3D Computer Vision

3D Computer Vision
Author: Yu-Jin Zhang
Publisher: Springer Nature
Total Pages: 480
Release:
Genre: Computer vision
ISBN: 9811976031


Download 3D Computer Vision Book in PDF, Epub and Kindle

Zusammenfassung: This book offers a comprehensive and unbiased introduction to 3D Computer Vision, ranging from its foundations and essential principles to advanced methodologies and technologies. Divided into 11 chapters, it covers the main workflow of 3D computer vision as follows: camera imaging and calibration models; various modes and means of 3D image acquisition; binocular, trinocular and multi-ocular stereo vision matching techniques; monocular single-image and multi-image scene restoration methods; point cloud data processing and modeling; simultaneous location and mapping; generalized image and scene matching; and understanding spatial-temporal behavior. Each topic is addressed in a uniform manner: the dedicated chapter first covers the essential concepts and basic principles before presenting a selection of typical, specific methods and practical techniques. In turn, it introduces readers to the most important recent developments, especially in the last three years. This approach allows them to quickly familiarize themselves with the subject, implement the techniques discussed, and design or improve their own methods for specific applications. The book can be used as a textbook for graduate courses in computer science, computer engineering, electrical engineering, data science, and related subjects. It also offers a valuable reference guide for researchers and practitioners alike

Geometry of Deep Learning

Geometry of Deep Learning
Author: Jong Chul Ye
Publisher: Springer Nature
Total Pages: 338
Release: 2022-01-05
Genre: Mathematics
ISBN: 9811660468


Download Geometry of Deep Learning Book in PDF, Epub and Kindle

The focus of this book is on providing students with insights into geometry that can help them understand deep learning from a unified perspective. Rather than describing deep learning as an implementation technique, as is usually the case in many existing deep learning books, here, deep learning is explained as an ultimate form of signal processing techniques that can be imagined. To support this claim, an overview of classical kernel machine learning approaches is presented, and their advantages and limitations are explained. Following a detailed explanation of the basic building blocks of deep neural networks from a biological and algorithmic point of view, the latest tools such as attention, normalization, Transformer, BERT, GPT-3, and others are described. Here, too, the focus is on the fact that in these heuristic approaches, there is an important, beautiful geometric structure behind the intuition that enables a systematic understanding. A unified geometric analysis to understand the working mechanism of deep learning from high-dimensional geometry is offered. Then, different forms of generative models like GAN, VAE, normalizing flows, optimal transport, and so on are described from a unified geometric perspective, showing that they actually come from statistical distance-minimization problems. Because this book contains up-to-date information from both a practical and theoretical point of view, it can be used as an advanced deep learning textbook in universities or as a reference source for researchers interested in acquiring the latest deep learning algorithms and their underlying principles. In addition, the book has been prepared for a codeshare course for both engineering and mathematics students, thus much of the content is interdisciplinary and will appeal to students from both disciplines.

Computer Vision – ECCV 2018

Computer Vision – ECCV 2018
Author: Vittorio Ferrari
Publisher: Springer
Total Pages: 869
Release: 2018-10-08
Genre: Computers
ISBN: 3030012255


Download Computer Vision – ECCV 2018 Book in PDF, Epub and Kindle

The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018.The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions.

Computer Vision – ECCV 2020

Computer Vision – ECCV 2020
Author: Andrea Vedaldi
Publisher: Springer Nature
Total Pages: 830
Release: 2020-11-12
Genre: Computers
ISBN: 3030585743


Download Computer Vision – ECCV 2020 Book in PDF, Epub and Kindle

The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

3D Imaging Technologies—Multi-dimensional Signal Processing and Deep Learning

3D Imaging Technologies—Multi-dimensional Signal Processing and Deep Learning
Author: Lakhmi C. Jain
Publisher: Springer Nature
Total Pages: 341
Release: 2021-10-01
Genre: Technology & Engineering
ISBN: 9811633916


Download 3D Imaging Technologies—Multi-dimensional Signal Processing and Deep Learning Book in PDF, Epub and Kindle

This book presents high-quality research in the field of 3D imaging technology. The second edition of International Conference on 3D Imaging Technology (3DDIT-MSP&DL) continues the good traditions already established by the first 3DIT conference (IC3DIT2019) to provide a wide scientific forum for researchers, academia and practitioners to exchange newest ideas and recent achievements in all aspects of image processing and analysis, together with their contemporary applications. The conference proceedings are published in 2 volumes. The main topics of the papers comprise famous trends as: 3D image representation, 3D image technology, 3D images and graphics, and computing and 3D information technology. In these proceedings, special attention is paid at the 3D tensor image representation, the 3D content generation technologies, big data analysis, and also deep learning, artificial intelligence, the 3D image analysis and video understanding, the 3D virtual and augmented reality, and many related areas. The first volume contains papers in 3D image processing, transforms and technologies. The second volume is about computing and information technologies, computer images and graphics and related applications. The two volumes of the book cover a wide area of the aspects of the contemporary multidimensional imaging and the related future trends from data acquisition to real-world applications based on various techniques and theoretical approaches.

The International Conference on Image, Vision and Intelligent Systems (ICIVIS 2021)

The International Conference on Image, Vision and Intelligent Systems (ICIVIS 2021)
Author: Jian Yao
Publisher: Springer Nature
Total Pages: 1174
Release: 2022-03-03
Genre: Technology & Engineering
ISBN: 9811669635


Download The International Conference on Image, Vision and Intelligent Systems (ICIVIS 2021) Book in PDF, Epub and Kindle

This book is a collection of the papers accepted by the ICIVIS 2021—The International Conference on Image, Vision and Intelligent Systems held on June 15–17, 2021, in Changsha, China. The topics focus but are not limited to image, vision and intelligent systems. Each part can be used as an excellent reference by industry practitioners, university faculties, research fellows and undergraduates as well as graduate students who need to build a knowledge base of the most current advances and state-of-practice in the topics covered by this conference proceedings.