Gradient Microstructure in Laser Shock Peened Materials

Gradient Microstructure in Laser Shock Peened Materials
Author: Liucheng Zhou
Publisher: Springer Nature
Total Pages: 241
Release: 2021-06-12
Genre: Technology & Engineering
ISBN: 9811617473


Download Gradient Microstructure in Laser Shock Peened Materials Book in PDF, Epub and Kindle

This book introduces the fundamentals and principles of laser shock peening (LSP) for aeronautical materials. It focuses on the innovation in both theory and method related to LSP-induced gradient structures in titanium alloys and Ni-based alloys which have been commonly used in aircraft industries. The main contents of the book include: the characteristics of laser shock wave, the formation mechanism of gradient structures and the strengthening-toughing mechanism by gradient structures. The research has accumulated a large amount of experimental data, which has proven the significant effectiveness of LSP on the improvement of the fatigue performance of metal parts, and related findings have been successfully applied in aerospace field. This book could be used by the researchers who work in the field of LSP, mechanical strength, machine manufacturing and surface engineering, as well as who major in laser shock wave and materials science.

Effects of Laser Shock Peening on Residual Stress, Texture and Deformation Microstructure of Ti-6Al-4V Alloy

Effects of Laser Shock Peening on Residual Stress, Texture and Deformation Microstructure of Ti-6Al-4V Alloy
Author: Yixiang Zhao
Publisher:
Total Pages: 203
Release: 2012
Genre:
ISBN:


Download Effects of Laser Shock Peening on Residual Stress, Texture and Deformation Microstructure of Ti-6Al-4V Alloy Book in PDF, Epub and Kindle

Laser shock peening (LSP) is a novel surface treatment process that generates deep compressive residual stresses and microstructural changes and thereby dramatically improves fatigue strength of critical metal aircraft engine parts. In the past, researchers have evaluated the mechanical effects of LSP experimentally through residual strain/stress measurements, microhardness measurements or fatigue life improvement. A number of microstructure characterizations have been done on variety laser shock peened materials. However, getting better view of how LSP brings about changes in the microstructure and establish quantitative relations between LSP parameters and residual strain/stress distributions, microstructure and texture evolution is still challenging. The present study was undertaken to develop a basic understanding of the effects of LSP on the residual strain/stress distributions, texture evolution and deformation microstructural changes in Ti-6Al-4V alloy. Scanning Electron Microscopy, Scanning Probe Microscopy, Conventional X-ray Diffraction, Synchrotron X-ray Diffraction, Electron BackScattered Diffraction, microhardness and nanoindentation have been used to characterize the laser shock peened Ti-6Al-4V alloy samples. The microstructure and surface modification of laser shock peened sample are outlined in terms of laser shock peening processing parameters. Naked laser peened samples show prominent evidence of surface melting and recasting. Little difference between the peened and virgin materials can be found in the taped laser peened samples surface microstructures. Depth-resolved characterization of the residual strains and stresses was achieved using high-energy synchrotron X-ray diffraction as well as by conventional X-ray diffraction. Compressive residual strain at peened surface and tensile residual strain in the interior of the sample are found in taped samples. Naked LSP-treated samples show tensile residual stresses at peened surfaces, then dramatically change to compressive within short depth. Multiple diffraction peaks in the synchrotron X-ray diffraction patterns were used to analyze the residual elastic strain and plastic strain distributions in the LSP-treated Ti-6Al-4V samples. Anisotropic elastic lattice strain response in the hexagonal close-packed alpha titanium was revealed by Williamson-Hall plots of the peak broadening data. The depth profiles of mean diffraction ring width in synchrotron X-ray diffraction and FWHM in conventional X-ray diffraction give evidence of anisotropic plastic strains in the laser peened Ti-6Al-4V samples. Furthermore, using the whole pattern fitting method the Structure-Texture-Microstructure-Phase-Stresss combined analysis was performed based on the synchrotron diffraction data. The evolution of maximum pole intensity values from surface to interior proves that laser shock peening can change the texture in the laser peened samples. The near-surface and through-the-depth changes in strain/stress, texture and microstructure in samples were correlated with the laser processing energy levels applied on the samples. Residual stress relaxation in LSP-treated Ti-6Al-4V alloy due to the sample sectioning was also studied using SXRD and CXRD and was found to be significant to small section widths (to about 8 mm), but not as significant at larger widths, though the sectioning was found to introduce complex gradients. Finally, the local property changes were examined using microhardness and nanoindentation and near-surface hardening due to LSP treatment was noted and related to the plastic strain generated by the process.

Finite Element Modelling of Shot Peening and Strengthening Mechanism Analysis

Finite Element Modelling of Shot Peening and Strengthening Mechanism Analysis
Author: Cheng Wang
Publisher: Scientific Research Publishing, Inc. USA
Total Pages: 336
Release: 2023-08-25
Genre: Antiques & Collectibles
ISBN: 1649977069


Download Finite Element Modelling of Shot Peening and Strengthening Mechanism Analysis Book in PDF, Epub and Kindle

The service performance and life of metal parts are closely related to the surface integrity of materials. Shot peening (SP) is a well-known surface strengthening technique and is widely used for the improvement of the component surface integrity in industrial fields, such as aerospace,vehicle, construction machinery and etc. With the rapid development of science and technology, numerous new SP techniques have been developed from the conventional mechanical shot peening, such as the laser shock peening (LSP), ultrasonic shot peening (USP),surface mechanical attrition treatment (SMAT) and etc. Different from the other mechanical processing techniques, a considerable number of process parameters have an influence on the surface strengthening effects of shot-peened metal parts. Therefore, the selection of the SP process parameters with respect to the different metal parts has always been a challenge. With the rapid development of the computer technology, the numerical simulation has increasingly attracted the more and more attentions both from the academy and the industry. Compared to the experimental investigations, the numerical simulations are not only timesaving and economical, but also can provide an insight into the surface strengthening mechanisms of SP.

Laser Shock Peening

Laser Shock Peening
Author: Shikun Zou
Publisher: Springer Nature
Total Pages: 398
Release: 2023-06-09
Genre: Science
ISBN: 9819911176


Download Laser Shock Peening Book in PDF, Epub and Kindle

This book highlights the fundamentals and latest progresses in the research and applications of laser shock peening (LSP). As a novel technology for surface treatment, LSP greatly improves the resistance of metallic materials to fatigue and corrosion. The book presents the mechanisms, techniques, and applications of LSP in a systematic way. It discusses a series of new progresses in fatigue performance improvement of metal parts with LSP. It also introduces lasers, equipment, and techniques of newly developed industry LSP, with a detailed description of the novel LSP blisk. The book demonstrates in details numerical analysis and simulation techniques and illustrates process stability control, quality control, and analysis determination techniques. It is a valuable reference for scientists, engineers, and students in the fields of laser science, materials science, astronautics, and aeronautics who seek to understand, develop, and optimize LSP processes.

Laser shock peening Performance and process simulation

Laser shock peening Performance and process simulation
Author: K. Ding
Publisher: CRC Press
Total Pages: 182
Release: 2006-01-24
Genre: Technology & Engineering
ISBN: 9780849334443


Download Laser shock peening Performance and process simulation Book in PDF, Epub and Kindle

Laser shock peening (LSP) is a process for inducing compressive residual stresses using shock waves generated by laser pulses. It is a relatively new surface treatment for metallic materials that can greatly improve their resistance to crack initiation and propagation brought on by cyclic loading and fatigue. This book, the first of its kind, consolidates the scattered knowledge about LSP into one comprehensive volume. It describes the mechanisms of LSP and its substantial role in improving fatigue performance in terms of modification of microstructure, surface morphology, hardness, and strength. In particular, it describes numerical simulation techniques and procedures that can be adopted by engineers and research scientists to design, evaluate, and optimize LSP processes in practical applications.

Laser Shocking Nano-Crystallization and High-Temperature Modification Technology

Laser Shocking Nano-Crystallization and High-Temperature Modification Technology
Author: Xudong Ren
Publisher: Springer
Total Pages: 200
Release: 2015-03-04
Genre: Technology & Engineering
ISBN: 3662464446


Download Laser Shocking Nano-Crystallization and High-Temperature Modification Technology Book in PDF, Epub and Kindle

The aim of this book is to present foundational research on the nano-crystallization, high-temperature modification, micro-structure evolution and plastic deformation induced by laser shock processing. In this regard, the focus is on heat-resistant steel, aluminum alloy, Ti alloys and Ni-based alloys, offering valuable scientific insights into the industrial applications of laser shock processing (LSP) technology. The book addresses various topics, i.e., the formation mechanism and productivity improvement of nano-crystalline diamond by laser processing, the surface integrity and fatigue lives of heat-resistant steels, Ti alloys and Ni-based alloys after LSP with different processing parameters, tensile properties and fractural morphology after LSP at different temperatures, strain-rates and grain refinement mechanisms based on the micro-structure evolution. Moreover, the effect of heating temperature and exposure time on stress thermal relaxation and the influence of compressive stress on the stress intensity factor of hole-edge cracks by high strain rate laser shock processing are also analyzed. A new type of statistical data model to describe the fatigue cracking growth with limited data is proposed based on the consideration of the effects of fracture growth on the reliability and confidence level. This book is intended for researchers, engineers and postgraduates in the fields of nanotechnology and micro-engineering who are interested in the partial or overall strengthening of materials, especially those with a focus on surface integrity and fatigue life.

Advanced Approaches Applied to Materials Development and Design Predictions

Advanced Approaches Applied to Materials Development and Design Predictions
Author: Abílio M. P. De Jesus
Publisher: MDPI
Total Pages: 164
Release: 2020-03-25
Genre: Technology & Engineering
ISBN: 3039284126


Download Advanced Approaches Applied to Materials Development and Design Predictions Book in PDF, Epub and Kindle

This thematic issue on advanced simulation tools applied to materials development and design predictions gathers selected extended papers related to power generation systems, presented at the XIX International Colloquium on Mechanical Fatigue of Metals (ICMFM XIX), organized at University of Porto, Portugal, in 2018. In this issue, the limits of the current generation of materials are explored, which are continuously being reached according to the frontier of hostile environments, whether in the aerospace, nuclear, or petrochemistry industry, or in the design of gas turbines where efficiency of energy production and transformation demands increased temperatures and pressures. Thus, advanced methods and applications for theoretical, numerical, and experimental contributions that address these issues on failure mechanism modeling and simulation of materials are covered. As the Guest Editors, we would like to thank all the authors who submitted papers to this Special Issue. All the papers published were peer-reviewed by experts in the field whose comments helped to improve the quality of the edition. We also would like to thank the Editorial Board of Materials for their assistance in managing this Special Issue.

Corrosion of Steel in Concrete Structures

Corrosion of Steel in Concrete Structures
Author: Amir Poursaee
Publisher: Woodhead Publishing
Total Pages: 400
Release: 2023-02-20
Genre: Technology & Engineering
ISBN: 0323851320


Download Corrosion of Steel in Concrete Structures Book in PDF, Epub and Kindle

Essential reading for researchers, practitioners, and engineers, this book covers not only all the important aspects in the field of corrosion of steel reinforced concrete but also discusses new topics and future trends. Theoretical concepts of corrosion of steel in concrete structures, the variety of reinforcing materials and concrete, including stainless steel and galvanized steel, measurements and evaluations, such as electrochemical techniques and acoustic emission, protection and maintenance methods, and modelling, latest developments, and future trends in the field are discussed. Comprehensive coverage of the corrosion of steel bars in concrete, investigating the range of reinforcing materials, and types of concrete Introduces the latest measuring methods, data collection, and advanced modeling techniques Second edition covers a range of new, emerging topics such as the concept of chloride threshold value, concrete permeability and chloride diffusion, the role of steel microstructure, and innovations in corrosion detection devices

Selective Laser Melting: Materials and Applications

Selective Laser Melting: Materials and Applications
Author: Prashanth Konda Gokuldoss
Publisher:
Total Pages: 98
Release: 2020
Genre: Engineering (General). Civil engineering (General)
ISBN: 9783039285792


Download Selective Laser Melting: Materials and Applications Book in PDF, Epub and Kindle

Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers, and scientists. AM has the ability to fabricate materials to produce parts with complex shapes without any theoretical restrictions combined with added functionalities. Selective laser melting (SLM), also known as laser-based powder bed processing (LPBF), is one of the main AM process that can be used to fabricate wide variety of materials that are Al-, Ti-, Fe-, Ni-, Co-, W-, Ag-, and Au-based, etc. However, several challenges need to be addressed systematically, such as development of new materials that suit the SLM process conditions so the process capabilities can be fully used to produce new properties in these materials. Other issues in the field are the lack of microstructure-property correlations, premature failure, etc. Accordingly, this Special Issue (book) focuses mainly on the microstructure-correlation in three different alloys: AlSi10Mg, Ti6Al4V, and 304L stainless steel, where six articles are presented. Hence, this Special Issue outlines microstructure-property correlations in the SLM processed materials and provides a value addition to the field of AM.