Formation Damage during Improved Oil Recovery

Formation Damage during Improved Oil Recovery
Author: Bin Yuan
Publisher: Gulf Professional Publishing
Total Pages: 678
Release: 2018-05-31
Genre: Technology & Engineering
ISBN: 0128137835


Download Formation Damage during Improved Oil Recovery Book in PDF, Epub and Kindle

Formation Damage during Improved Oil Recovery: Fundamentals and Applications bridges the gap between theoretical knowledge and field practice by presenting information on formation damage issues that arise during enhanced oil recovery. Multi-contributed technical chapters include sections on modeling and simulation, lab experiments, field case studies, and newly proposed technologies and methods that are related to formation damage during secondary and tertiary recovery processes in both conventional and unconventional reservoirs. Focusing on both the fundamental theories related to EOR and formation damage, this reference helps engineers formulate integrated and systematic designs for applying EOR processes while also considering formation damage issues. Presents the first complete reference addressing formation damage as a result of enhanced oil recovery Provides the mechanisms for formation damage issues that are coupled with EOR Suggests appropriate preventative actions or responses Delivers a structured approach on how to understand the fundamental theories, practical challenges and solutions

Reservoir Formation Damage

Reservoir Formation Damage
Author: Faruk Civan
Publisher: Elsevier
Total Pages: 1135
Release: 2011-08-30
Genre: Technology & Engineering
ISBN: 0080471439


Download Reservoir Formation Damage Book in PDF, Epub and Kindle

Reservoir Formation Damage, Second edition is a comprehensive treatise of the theory and modeling of common formation damage problems and is an important guide for research and development, laboratory testing for diagnosis and effective treatment, and tailor-fit- design of optimal strategies for mitigation of reservoir formation damage. The new edition includes field case histories and simulated scenarios demonstrating the consequences of formation damage in petroleum reservoirsFaruk Civan, Ph.D., is an Alumni Chair Professor in the Mewbourne School of Petroleum and Geological Engineering at the University of Oklahoma in Norman. Dr. Civan has received numerous honors and awards, including five distinguished lectureship awards and the 2003 SPE Distinguished Achievement Award for Petroleum Engineering Faculty. Petroleum engineers and managers get critical material on evaluation, prevention, and remediation of formation damage which can save or cost millions in profits from a mechanistic point of view State-of-the-Art knowledge and valuable insights into the nature of processes and operational practices causing formation damage Provides new strategies designed to minimize the impact of and avoid formation damage in petroleum reservoirs with the newest drilling, monitoring, and detection techniques

Enhanced Oil Recovery in Shale and Tight Reservoirs

Enhanced Oil Recovery in Shale and Tight Reservoirs
Author: James J.Sheng
Publisher: Gulf Professional Publishing
Total Pages: 538
Release: 2019-11-07
Genre: Science
ISBN: 0128162716


Download Enhanced Oil Recovery in Shale and Tight Reservoirs Book in PDF, Epub and Kindle

Oil Recovery in Shale and Tight Reservoirs delivers a current, state-of-the-art resource for engineers trying to manage unconventional hydrocarbon resources. Going beyond the traditional EOR methods, this book helps readers solve key challenges on the proper methods, technologies and options available. Engineers and researchers will find a systematic list of methods and applications, including gas and water injection, methods to improve liquid recovery, as well as spontaneous and forced imbibition. Rounding out with additional methods, such as air foam drive and energized fluids, this book gives engineers the knowledge they need to tackle the most complex oil and gas assets. Helps readers understand the methods and mechanisms for enhanced oil recovery technology, specifically for shale and tight oil reservoirs Includes available EOR methods, along with recent practical case studies that cover topics like fracturing fluid flow back Teaches additional methods, such as soaking after fracturing, thermal recovery and microbial EOR

Reservoir Formation Damage

Reservoir Formation Damage
Author: Faruk Civan
Publisher: Gulf Professional Publishing
Total Pages: 1097
Release: 2023-04-07
Genre: Science
ISBN: 0323984738


Download Reservoir Formation Damage Book in PDF, Epub and Kindle

Reservoir Formation Damage: Fundamentals, Modeling, Assessment, and Mitigation, Fourth Edition gives engineers a structured layout to predict and improve productivity, providing strategies, recent developments and methods for more successful operations. Updated with many new chapters, including completion damage effects for fractured wells, flow assurance, and fluid damage effects, the book will help engineers better tackle today’s assets. Additional new chapters include bacterial induced formation damage, new aspects of chemically induced formation damage, and new field application designs and cost assessments for measures and strategies. Additional procedures for unconventional reservoirs get the engineer up to date. Structured to progress through your career, Reservoir Formation Damage, Fourth Edition continues to deliver a trusted source for both petroleum and reservoir engineers. Covers new applications through case studies and test questions Bridges theory and practice, with detailed illustrations and a structured progression of chapter topics Considers environmental aspects, with new content on water control, conformance and produced water reinjection

Chemical Enhanced Oil Recovery

Chemical Enhanced Oil Recovery
Author: Patrizio Raffa
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 277
Release: 2019-07-22
Genre: Technology & Engineering
ISBN: 3110640430


Download Chemical Enhanced Oil Recovery Book in PDF, Epub and Kindle

This book aims at presenting, describing, and summarizing the latest advances in polymer flooding regarding the chemical synthesis of the EOR agents and the numerical simulation of compositional models in porous media, including a description of the possible applications of nanotechnology acting as a booster of traditional chemical EOR processes. A large part of the world economy depends nowadays on non-renewable energy sources, most of them of fossil origin. Though the search for and the development of newer, greener, and more sustainable sources have been going on for the last decades, humanity is still fossil-fuel dependent. Primary and secondary oil recovery techniques merely produce up to a half of the Original Oil In Place. Enhanced Oil Recovery (EOR) processes are aimed at further increasing this value. Among these, chemical EOR techniques (including polymer flooding) present a great potential in low- and medium-viscosity oilfields. • Describes recent advances in chemical enhanced oil recovery. • Contains detailed description of polymer flooding and nanotechnology as promising boosting tools for EOR. • Includes both experimental and theoretical studies. About the Authors Patrizio Raffa is Assistant Professor at the University of Groningen. He focuses on design and synthesis of new polymeric materials optimized for industrial applications such as EOR, coatings and smart materials. He (co)authored about 40 articles in peer reviewed journals. Pablo Druetta works as lecturer at the University of Groningen (RUG) and as engineering consultant. He received his Ph.D. from RUG in 2018 and has been teaching at a graduate level for 15 years. His research focus lies on computational fluid dynamics (CFD).

Chemical Nanofluids in Enhanced Oil Recovery

Chemical Nanofluids in Enhanced Oil Recovery
Author: Rahul Saha
Publisher: CRC Press
Total Pages: 137
Release: 2021-09-14
Genre: Technology & Engineering
ISBN: 1000433617


Download Chemical Nanofluids in Enhanced Oil Recovery Book in PDF, Epub and Kindle

Sustainable world economy requires a steady supply of crude oil without any production constraints. Thus, the ever-increasing energy demand of the entire world can be mostly met through the enhanced production from crude oil from existing reservoirs. With the fact that newer reservoirs with large quantities of crude oil could not be explored at a faster pace, it will be inevitable to produce the crude oil from matured reservoirs at an affordable cost. Among alternate technologies, the chemical enhanced oil recovery (EOR) technique has promising potential to recover residual oil from matured reservoirs being subjected to primary and secondary water flooding operations. Due to pertinent complex phenomena that often have a combinatorial role and influence, the implementation of chemical EOR schemes such as alkali/surfactant/polymer flooding and their combinations necessitates upon a fundamental understanding of the potential mechanisms and their influences upon one another and desired response variables. Addressing these issues, the book attempts to provide useful screening criteria, guidelines, and rules of thumb for the identification of process parametric sets (including reservoir characteristics) and response characteristics (such as IFT, adsorption etc.,) that favor alternate chemical EOR systems. Finally, the book highlights the relevance of nanofluid/nanoparticle for conventional and unconventional reservoirs and serves as a needful resource to understand the emerging oil recovery technology. Overall, the volume will be of greater relevance for practicing engineers and consultants that wish to accelerate on field applications of chemical and nano-fluid EOR systems. Further, to those budding engineers that wish to improvise upon their technical know-how, the book will serve as a much-needed repository.