Finite Elements in Electrical and Magnetic Field Problems

Finite Elements in Electrical and Magnetic Field Problems
Author: M. V. K. Chari
Publisher: John Wiley & Sons
Total Pages: 240
Release: 1980
Genre: Mathematics
ISBN:


Download Finite Elements in Electrical and Magnetic Field Problems Book in PDF, Epub and Kindle

Finite elements - the basic concepts and an application to 3-D magnetostatic problems. The fundamental equations of eletric and magnetic fields. Shape functions. Software engineering aspects of finite elements. Finite element solution of magnetic and electric field problems in electrical machines and devices. Numerical analysis of Eddy-Current problems. The high-order polynomial finite element method in electromagnetic field computation. Transient solution of the diffusion equation by discrete Fourier transformation. Mutually constrained partial differential and integral equation field formulations. Applications of integral equation methods to the numerical solution of magnetostatic and Eddy-Current problems.

Finite Elements for Electrical Engineers

Finite Elements for Electrical Engineers
Author: Peter Peet Silvester
Publisher: Cambridge University Press
Total Pages: 520
Release: 1996-09-05
Genre: Mathematics
ISBN: 9780521449533


Download Finite Elements for Electrical Engineers Book in PDF, Epub and Kindle

Like the earlier editions, this text begins by deriving finite elements for the simplest familiar potential fields, then advances to formulate finite elements for a wide range of applied electromagnetics problems. A wide selection of demonstration programs allows the reader to follow the practical use of the methods.

Magnetic Materials and 3D Finite Element Modeling

Magnetic Materials and 3D Finite Element Modeling
Author: João Pedro A. Bastos
Publisher: CRC Press
Total Pages: 396
Release: 2017-04-28
Genre: Technology & Engineering
ISBN: 1466592524


Download Magnetic Materials and 3D Finite Element Modeling Book in PDF, Epub and Kindle

Magnetic Materials and 3D Finite Element Modeling explores material characterization and finite element modeling (FEM) applications. This book relates to electromagnetic analysis based on Maxwell’s equations and application of the finite element (FE) method to low frequency devices. A great source for senior undergraduate and graduate students in electromagnetics, it also supports industry professionals working in magnetics, electromagnetics, ferromagnetic materials science and electrical engineering. The authors present current concepts on ferromagnetic material characterizations and losses. They provide introductory material; highlight basic electromagnetics, present experimental and numerical modeling related to losses and focus on FEM applied to 3D applications. They also explain various formulations, and discuss numerical codes. • Furnishes algorithms in computational language • Summarizes concepts related to the FE method • Uses classical algebra to present the method, making it easily accessible to engineers Written in an easy-to-understand tutorial format, the text begins with a short presentation of Maxwell’s equations, discusses the generation mechanism of iron losses, and introduces their static and dynamic components. It then demonstrates simplified models for the hysteresis phenomena under alternating magnetic fields. The book also focuses on the Preisach and Jiles–Atherton models, discusses vector hysterisis modeling, introduces the FE technique, and presents nodal and edge elements applied to 3D FE formulation connected to the hysteretic phenomena. The book discusses the concept of source-field for magnetostatic cases, magnetodynamic fields, eddy currents, and anisotropy. It also explores the need for more sophisticated coding, and presents techniques for solving linear systems generated by the FE cases while considering advantages and drawbacks.

Quick Finite Elements for Electromagnetic Waves

Quick Finite Elements for Electromagnetic Waves
Author: Giuseppe Pelosi
Publisher: Artech House
Total Pages: 311
Release: 2009
Genre: Science
ISBN: 1596933461


Download Quick Finite Elements for Electromagnetic Waves Book in PDF, Epub and Kindle

The classic 1998 Artech House book, Quick Finite Elements for Electromagnetic Waves, has now been revised and expanded to bring you up-to-date with the latest developments in the Field. You find brand new discussions on finite elements in 3D, 3D resonant cavities, and 3D waveguide devices. Moreover, the second edition supplies you with MATLAB code, making this resource easier to comprehend and use for your projects in the field. This practical book and accompanying software enables you to quickly and easily work out challenging microwave engineering and high-frequency electromagnetic problems using the finite element method (FEM). Using clear, concise text and dozens of real-world application examples, the book provides a detailed description of FEM implementation, while the software provides the code and tools needed to solve the three major types of EM problems: guided propagation, scattering, and radiation. With this unique book and software set in hand, you can compute the dispersion diagram of arbitrarily shaped inhomogeneous isotropic lossless or lossy guiding structures, analyze E- and H-plane waveguide discontinuities and devices, and understand the reflection from and transmission through simple 2D and 3D inhomogeneous periodic structures. CD-ROM Included! Easy-to-use finite element software contains ready-made MATLAB and FORTRAN source code that you can use immediately to solve a wide range of microwave and EM problems. The package is fully compatible with Internet "freeware, " so you can perform advanced engineering functions without having to purchase expensive pre- and post-processing tools.

Finite Elements, Electromagnetics and Design

Finite Elements, Electromagnetics and Design
Author: S.R.H. Hoole
Publisher: Elsevier
Total Pages: 668
Release: 1995-05-19
Genre: Technology & Engineering
ISBN: 0080531687


Download Finite Elements, Electromagnetics and Design Book in PDF, Epub and Kindle

Advanced topics of research in field computation are explored in this publication. Contributions have been sourced from international experts, ensuring a comprehensive specialist perspective. A unity of style has been achieved by the editor, who has specifically inserted appropriate cross-references throughout the volume, plus a single collected set of references at the end. The book provides a multi-faceted overview of the power and effectiveness of computation techniques in engineering electromagnetics. In addition to examining recent and current developments, it is hoped that it will stimulate further research in the field.

Finite Element and Finite Difference Methods in Electromagnetic Scattering

Finite Element and Finite Difference Methods in Electromagnetic Scattering
Author: M.A. Morgan
Publisher: Elsevier
Total Pages: 398
Release: 2013-10-22
Genre: Technology & Engineering
ISBN: 1483289532


Download Finite Element and Finite Difference Methods in Electromagnetic Scattering Book in PDF, Epub and Kindle

This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled scalar potentials, to the consideration of conforming boundary elements and leap-frog time-marching in transient field problems involving corners and wedges in two and three dimensions, the volume will provide an indispensable reference source for practitioners and students of computational electromagnetics.

The Finite Element Method for Electromagnetic Modeling

The Finite Element Method for Electromagnetic Modeling
Author: Gérard Meunier
Publisher: John Wiley & Sons
Total Pages: 618
Release: 2010-01-05
Genre: Science
ISBN: 0470393807


Download The Finite Element Method for Electromagnetic Modeling Book in PDF, Epub and Kindle

Written by specialists of modeling in electromagnetism, this book provides a comprehensive review of the finite element method for low frequency applications. Fundamentals of the method as well as new advances in the field are described in detail. Chapters 1 to 4 present general 2D and 3D static and dynamic formulations by the use of scalar and vector unknowns and adapted interpolations for the fields (nodal, edge, face or volume). Chapter 5 is dedicated to the presentation of different macroscopic behavior laws of materials and their implementation in a finite element context: anisotropy and hysteretic properties for magnetic sheets, iron losses, non-linear permanent magnets and superconductors. More specific formulations are then proposed: the modeling of thin regions when finite elements become misfit (Chapter 6), infinite domains by using geometrical transformations (Chapter 7), the coupling of 2D and 3D formulations with circuit equations (Chapter 8), taking into account the movement, particularly in the presence of Eddy currents (Chapter 9) and an original approach for the treatment of geometrical symmetries when the sources are not symmetric (Chapter 10). Chapters 11 to 13 are devoted to coupled problems: magneto-thermal coupling for induction heating, magneto-mechanical coupling by introducing the notion of strong and weak coupling and magneto-hydrodynamical coupling focusing on electromagnetic instabilities in fluid conductors. Chapter 14 presents different meshing methods in the context of electromagnetism (presence of air) and introduces self-adaptive mesh refinement procedures. Optimization techniques are then covered in Chapter 15, with the adaptation of deterministic and probabilistic methods to the numerical finite element environment. Chapter 16 presents a variational approach of electromagnetism, showing how Maxwell equations are derived from thermodynamic principles.

Finite Elements for Wave Electromagnetics

Finite Elements for Wave Electromagnetics
Author: IEEE Antennas and Propagation Society
Publisher: Institute of Electrical & Electronics Engineers(IEEE)
Total Pages: 560
Release: 1994
Genre: Mathematics
ISBN:


Download Finite Elements for Wave Electromagnetics Book in PDF, Epub and Kindle

Numerical Methods in Electromagnetism

Numerical Methods in Electromagnetism
Author: M. V.K. Chari
Publisher: Academic Press
Total Pages: 783
Release: 2000
Genre: Mathematics
ISBN: 012615760X


Download Numerical Methods in Electromagnetism Book in PDF, Epub and Kindle

Electromagnetics is the foundation of our electric technology. It describes the fundamental principles upon which electricity is generated and used. This includes electric machines, high voltage transmission, telecommunication, radar, and recording and digital computing. Numerical Methods in Electromagnetism will serve both as an introductory text for graduate students and as a reference book for professional engineers and researchers. This book leads the uninitiated into the realm of numerical methods for solving electromagnetic field problems by examples and illustrations. Detailed descriptions of advanced techniques are also included for the benefit of working engineers and research students. Comprehensive descriptions of numerical methods In-depth introduction to finite differences, finite elements, and integral equations Illustrations and applications of linear and nonlinear solutions for multi-dimensional analysis Numerical examples to facilitate understanding of the methods Appendices for quick reference of mathematical and numerical methods employed