Falling Liquid Films

Falling Liquid Films
Author: S. Kalliadasis
Publisher: Springer Science & Business Media
Total Pages: 446
Release: 2011-09-24
Genre: Mathematics
ISBN: 1848823673


Download Falling Liquid Films Book in PDF, Epub and Kindle

Falling Liquid Films gives a detailed review of state-of-the-art theoretical, analytical and numerical methodologies, for the analysis of dissipative wave dynamics and pattern formation on the surface of a film falling down a planar inclined substrate. This prototype is an open-flow hydrodynamic instability, that represents an excellent paradigm for the study of complexity in active nonlinear media with energy supply, dissipation and dispersion. It will also be of use for a more general understanding of specific events characterizing the transition to spatio-temporal chaos and weak/dissipative turbulence. Particular emphasis is given to low-dimensional approximations for such flows through a hierarchy of modeling approaches, including equations of the boundary-layer type, averaged formulations based on weighted residuals approaches and long-wave expansions. Whenever possible the link between theory and experiment is illustrated, and, as a further bridge between the two, the development of order-of-magnitude estimates and scaling arguments is used to facilitate the understanding of basic, underlying physics. This monograph will appeal to advanced graduate students in applied mathematics, science or engineering undertaking research on interfacial fluid mechanics or studying fluid mechanics as part of their program. It will also be of use to researchers working on both applied, fundamental theoretical and experimental aspects of thin film flows, as well as engineers and technologists dealing with processes involving isothermal or heated films. This monograph is largely self-contained and no background on interfacial fluid mechanics is assumed.

Thinning and Rupture of a Thin Liquid Film on a Heated Surface

Thinning and Rupture of a Thin Liquid Film on a Heated Surface
Author:
Publisher:
Total Pages: 5
Release: 1992
Genre:
ISBN:


Download Thinning and Rupture of a Thin Liquid Film on a Heated Surface Book in PDF, Epub and Kindle

The objective of this work continues to be the study of dynamics, stability, and rupture (including contact line motions) of thin liquid films, especially with heat and/or mass transfer. Following the publication of a comprehensive paper on thin-film stability and rupture, taking into account evaporation (condensation), thermocapillarity, surface tension, vapor recoil, van der Waals forces, and mass loss (gain), two follow-up papers have appeared. The first examines the conditions for a non-uniformly-heated liquid film to rupture, owing to thermocapillarity, while the second reports experimental results in excellent agreement with the theory on non-isothermal free-surface problems. Another paper extends some previous results to the case where the viscosity of the liquid is a function of temperature. By proper rescaling, it is shown that the evolution equation can be transformed into the constant-viscosity case, so that previous results can be applied directly. Another paper considers the nonlinear growth, steepening, and wavebreaking of an isothermal thin liquid film draining down an inclined plate. The competition between mean flow and evaporation gives important morphological changes that control the heat-transfer process in the wavy regime. A number of other results were obtained. 9 refs.

Applied Mechanics Reviews

Applied Mechanics Reviews
Author:
Publisher:
Total Pages: 654
Release: 1965
Genre: Mechanics, Applied
ISBN:


Download Applied Mechanics Reviews Book in PDF, Epub and Kindle

Falling Liquid Films

Falling Liquid Films
Author: S. Kalliadasis
Publisher: Springer
Total Pages: 440
Release: 2011-09-25
Genre: Mathematics
ISBN: 9781848823662


Download Falling Liquid Films Book in PDF, Epub and Kindle

Falling Liquid Films gives a detailed review of state-of-the-art theoretical, analytical and numerical methodologies, for the analysis of dissipative wave dynamics and pattern formation on the surface of a film falling down a planar inclined substrate. This prototype is an open-flow hydrodynamic instability, that represents an excellent paradigm for the study of complexity in active nonlinear media with energy supply, dissipation and dispersion. It will also be of use for a more general understanding of specific events characterizing the transition to spatio-temporal chaos and weak/dissipative turbulence. Particular emphasis is given to low-dimensional approximations for such flows through a hierarchy of modeling approaches, including equations of the boundary-layer type, averaged formulations based on weighted residuals approaches and long-wave expansions. Whenever possible the link between theory and experiment is illustrated, and, as a further bridge between the two, the development of order-of-magnitude estimates and scaling arguments is used to facilitate the understanding of basic, underlying physics. This monograph will appeal to advanced graduate students in applied mathematics, science or engineering undertaking research on interfacial fluid mechanics or studying fluid mechanics as part of their program. It will also be of use to researchers working on both applied, fundamental theoretical and experimental aspects of thin film flows, as well as engineers and technologists dealing with processes involving isothermal or heated films. This monograph is largely self-contained and no background on interfacial fluid mechanics is assumed.