Experiments and Model Development of a Dual Mode, Turbulent Jet Ignition Engine

Experiments and Model Development of a Dual Mode, Turbulent Jet Ignition Engine
Author: Sedigheh Tolou
Publisher:
Total Pages: 174
Release: 2019
Genre: Electronic dissertations
ISBN: 9781392027943


Download Experiments and Model Development of a Dual Mode, Turbulent Jet Ignition Engine Book in PDF, Epub and Kindle

The number of vehicles powered by a source of energy other than traditional petroleum fuels will increase as time passes. However, based on current predictions, vehicles run on liquid fuels will be the major source of transportation for decades to come. Advanced combustion technologies can improve fuel economy of internal combustion (IC) engines and reduce exhaust emissions. The Dual Mode, Turbulent Jet Ignition (DM-TJI) system is an advanced, distributed combustion technology which can achieve high diesel-like thermal efficiencies at medium to high loads and potentially exceed diesel efficiencies at low-load operating conditions. The DM-TJI strategy extends the mixture flammability limits by igniting lean and/or highly dilute mixtures, leading to low-temperature combustion (LTC) modes in spark ignition (SI) engines. A novel, reduced order, and physics-based model was developed to predict the behavior of a DM-TJI engine with a pre-chamber air valve assembly. The engine model developed was calibrated based on experimental data from a Prototype II DM-TJI engine. This engine was designed, built, and tested at the MSU Energy and Automotive Research Laboratory (EARL). A predictive, generalized model was introduced to obtain a complete engine fuel map for the DM-TJI engine. The engine fuel map was generated in a four-cylinder boosted configuration under highly dilute conditions, up to 40% external exhaust gas recirculation (EGR). A vehicle simulation was then performed to further explore fuel economy gains using the fuel map generated for the DM-TJI engine. The DM-TJI engine was embodied in an industry-based vehicle to examine the behavior of the engine over the U.S. Environmental Protection Agency (EPA) driving schedules. The results obtained from the drive cycle analysis of the DM-TJI engine in an industry-based vehicle were compared to the results of the same vehicle with its original engine. The vehicle equipped with the DM-TJI system was observed to benefit from ~13% improvement in fuel economy and ~11% reduction in CO2 emission over the EPA combined city/high driving schedules. Potential improvements were discussed, as these results of the drive cycle analysis are the first-ever reported results for a DM-TJI engine embodied in an industry-based vehicle. The resulting fuel economy and CO2 emission were used to conduct a cost-benefit analysis of a DM-TJI engine. The cost-benefit analysis followed the economic and key inputs used by the U.S. EPA in a Proposed Determination prepared by that agency. The outcomes of the cost-benefit analysis for the vehicle equipped with the DM-TJI system were reported in comparison with the same vehicle with its base engine. The extra costs of a DM-TJI engine were observed to be compensated over the first three years of the vehicle's life time. The results projected maximum savings of approximately 2400 in 2019 dollars. This includes the lifetime-discounted present value of the net benefits of the DM-TJI technology, compared to the base engine examined. In this dollar saving estimate, the societal effects of CO2 emission were calculated based on values by the interagency working group (IWG) at 3% discount rate.

Experimental Analysis and Model Development of Dual Mode, Turbulent Jet Ignition (DM-TJI) Engine Operating with Gasoline and Alternative Fuels

Experimental Analysis and Model Development of Dual Mode, Turbulent Jet Ignition (DM-TJI) Engine Operating with Gasoline and Alternative Fuels
Author: Yidnekachew Messele Ayele
Publisher:
Total Pages: 0
Release: 2022
Genre: Electronic dissertations
ISBN:


Download Experimental Analysis and Model Development of Dual Mode, Turbulent Jet Ignition (DM-TJI) Engine Operating with Gasoline and Alternative Fuels Book in PDF, Epub and Kindle

Gasoline fuel is the most convenient energy source for light-duty vehicles in energy density and refueling time. However, the emission regulations for internal combustion engines force the industry to exploit innovative combustion technologies. The spark-ignition engine was forced to be cleaner and more efficient, changing from regular combustion engines to a more advanced internal combustion engine and electrification. The current scenario shows that automotive companies and researchers are exploring hybrid powertrains with advanced internal combustion engine technologies with electrification or pure electric vehicles. The Dual Mode, Turbulent Jet Ignition (DM-TJI) system is one of the promising advanced combustion systems, powered by active air/fuel scavenging pre-chamber ignition systems. The distributed ignition sites created by the pre-chamber flames improve the combustion engine's efficiency, simultaneously mitigating combustion knock at a high engine compression ratio and enabling lean-burn or high level of external EGR dilution operation. This study analyzes the performance of a single-cylinder DM-TJI metal engine with gasoline and alternative fuels. The first part of the study presents the experimental investigations on three pre-chamber nozzle orifice diameters at various engine speeds and 10 bar engine load. The combustion parameters for each tested orifice diameter are presented for the incremental engine speeds. A numerical analysis was conducted using the GT-Power model simulation tool to support the experimental result. The DM-TJI engine's maximum gross indicated efficiency was examined and found to be 44.56%, with a higher EGR dilution rate of 45%. This orifice diameter study reported on the first published results of the desertion. Additional experimental data were collected for the selected orifice diameter at a wide range of engine operating test matrices. A predictive engine model was introduced with experimental data validation. The experimental data and predictive model generated the engine performance and fuel map for a real-world fuel economy study. Conventional and hybrid powertrain vehicles were developed with GT-Suite commercial software. Each powertrain model was calibrated in terms of components (battery, electric motors) capacity, internal combustion engine operative points, energy management strategy, and gear ratios with chassis dynamometer measured data of the vehicle drive cycle. A selected U.S. Environmental Protection Agency (EPA) driving schedule was implemented on the GT-Suite powertrain. The DM-TJI engine drive cycle fuel economy is compared to an industry-based conventional vehicle with the same powertrain except for the engine map. The results show the DM-TJI engine fuel economy improvement between 10.5%-17.29% and CO2 emissions reductions between 9.51%-14.75% for the selected driving schedule. Mild and parallel hybrid powertrain further improve the fuel economy by 9.23% and 29.88%, respectively, compared to the conventional powertrain of the DM-TJI engine. The CO2 emission was reduced by 23%. Finally, the single-cylinder DM-TJI metal engine performance under different alternative fuels was studied. An experimental test was carried out at stoichiometric conditions with different fuels, engine speed, engine load, and EGR dilution rates. Compared to gasoline fuel, E80 ethanol blend fuel produces 4.47% less CO2 and 25.75% less CO emission, and methane fuel produces 27.91% less CO2 and 57.85% less CO emission. E80 ethanol blend has the highest indicated efficiency of 45.61% with 45% EGR dilution. Methane fuel has a maximum indicated efficiency of 45.03% with 38.5% EGR dilution.

Physics of Turbulent Jet Ignition

Physics of Turbulent Jet Ignition
Author: Sayan Biswas
Publisher: Springer
Total Pages: 230
Release: 2018-05-03
Genre: Technology & Engineering
ISBN: 3319762435


Download Physics of Turbulent Jet Ignition Book in PDF, Epub and Kindle

This book focuses on developing strategies for ultra-lean combustion of natural gas and hydrogen, and contributes to the research on extending the lean flammability limit of hydrogen and air using a hot supersonic jet. The author addresses experimental methods, data analysis techniques, and results throughout each chapter and: Explains the fundamental mechanisms behind turbulent hot jet ignition using non-dimensional analysis Explores ignition characteristics by impinging hot jet and multiple jets in relation to better controllability and lean combustion Explores how different instability modes interact with the acoustic modes of the combustion chamber. This book provides a potential answer to some of the issues that arise from lean engine operation, such as poor ignition, engine misfire, cycle-to-cycle variability, combustion instability, reduction in efficiency, and an increase in unburned hydrocarbon emissions. This thesis was submitted to and approved by Purdue University.

Introduction to Modeling and Control of Internal Combustion Engine Systems

Introduction to Modeling and Control of Internal Combustion Engine Systems
Author: Lino Guzzella
Publisher: Springer Science & Business Media
Total Pages: 303
Release: 2013-03-14
Genre: Technology & Engineering
ISBN: 3662080036


Download Introduction to Modeling and Control of Internal Combustion Engine Systems Book in PDF, Epub and Kindle

Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.

Common Rail System for GDI Engines

Common Rail System for GDI Engines
Author: Giovanni Fiengo
Publisher: Springer Science & Business Media
Total Pages: 86
Release: 2012-11-02
Genre: Technology & Engineering
ISBN: 1447144686


Download Common Rail System for GDI Engines Book in PDF, Epub and Kindle

Progressive reductions in vehicle emission requirements have forced the automotive industry to invest in research and development of alternative control strategies. Continual control action exerted by a dedicated electronic control unit ensures that best performance in terms of pollutant emissions and power density is married with driveability and diagnostics. Gasoline direct injection (GDI) engine technology is a way to attain these goals. This brief describes the functioning of a GDI engine equipped with a common rail (CR) system, and the devices necessary to run test-bench experiments in detail. The text should prove instructive to researchers in engine control and students are recommended to this brief as their first approach to this technology. Later chapters of the brief relate an innovative strategy designed to assist with the engine management system; injection pressure regulation for fuel pressure stabilization in the CR fuel line is proposed and validated by experiment. The resulting control scheme is composed of a feedback integral action and a static model-based feed-forward action, the gains of which are scheduled as a function of fundamental plant parameters. The tuning of closed-loop performance is supported by an analysis of the phase-margin and the sensitivity function. Experimental results confirm the effectiveness of the control algorithm in regulating the mean-value rail pressure independently from engine working conditions (engine speed and time of injection) with limited design effort.