Embrittlement of Engineering Alloys

Embrittlement of Engineering Alloys
Author: C. L. Briant
Publisher: Elsevier
Total Pages: 638
Release: 2013-10-22
Genre: Technology & Engineering
ISBN: 148328865X


Download Embrittlement of Engineering Alloys Book in PDF, Epub and Kindle

Treatise on Materials Science and Technology, Volume 25: Embrittlement of Engineering Alloys is an 11-chapter text that describes some situations that produce premature failure of several engineering alloys, including steels and nickel- and aluminum-base alloys. Chapters 1 to 3 consider situations where improper alloy composition, processing, and/or heat treatment can lead to a degradation of mechanical properties, even in the absence of an aggressive environment or an elevated temperature. Chapters 4 and 5 examine the effect of elevated temperatures on the mechanical properties of both ferrous and nonferrous alloys. Chapters 6 and 7 discuss the effects of corrosive environments on both stressed and unstressed materials. In these environments anodic dissolution is the primary step that leads to failure. Chapters 8 to 10 deal with the effects of aggressive environments that lead to enhanced decohesion or embrittlement of the metal, such as hydrogen, liquid metal, and irradiation-induced embrittlement. Chapter 11 looks into the embrittlement phenomena occurring during welding, one of the most common processing conditions to which a material could be subjected. This book will prove useful to materials scientists and researchers.

Structure and Properties of Engineering Alloys

Structure and Properties of Engineering Alloys
Author: William Fortune Smith
Publisher: McGraw-Hill Science, Engineering & Mathematics
Total Pages: 728
Release: 1993
Genre: Technology & Engineering
ISBN:


Download Structure and Properties of Engineering Alloys Book in PDF, Epub and Kindle

A junior-senior level text and reference for use by materials engineers and mechanical engineers in courses entitled advanced physical metallurgy. Foundations of Materials Science and Engineering is designed for a first course in materials science and engineering for engineering students. Understanding that this might be a student's first exposure to materials science, the book presents essential topics in a clear, concise manner, without extraneous details to overwhelm newcomers. Industrial examples and photographs used throughout the book give students a look at the many ways material science and engineering are applied in the real world. Author: William F Smith, University of Central Florida. Publisher's note.

Gaseous Hydrogen Embrittlement of Materials in Energy Technologies

Gaseous Hydrogen Embrittlement of Materials in Energy Technologies
Author: Richard P Gangloff
Publisher: Elsevier
Total Pages: 864
Release: 2012-01-16
Genre: Technology & Engineering
ISBN: 0857093894


Download Gaseous Hydrogen Embrittlement of Materials in Energy Technologies Book in PDF, Epub and Kindle

Many modern energy systems are reliant on the production, transportation, storage, and use of gaseous hydrogen. The safety, durability, performance and economic operation of these systems is challenged by operating-cycle dependent degradation by hydrogen of otherwise high performance materials. This important two-volume work provides a comprehensive and authoritative overview of the latest research into managing hydrogen embrittlement in energy technologies.Volume 1 is divided into three parts, the first of which provides an overview of the hydrogen embrittlement problem in specific technologies including petrochemical refining, automotive hydrogen tanks, nuclear waste disposal and power systems, and H2 storage and distribution facilities. Part two then examines modern methods of characterization and analysis of hydrogen damage and part three focuses on the hydrogen degradation of various alloy classesWith its distinguished editors and international team of expert contributors, Volume 1 of Gaseous hydrogen embrittlement of materials in energy technologies is an invaluable reference tool for engineers, designers, materials scientists, and solid mechanicians working with safety-critical components fabricated from high performance materials required to operate in severe environments based on hydrogen. Impacted technologies include aerospace, petrochemical refining, gas transmission, power generation and transportation. Summarises the wealth of recent research on understanding and dealing with the safety, durability, performance and economic operation of using gaseous hydrogen at high pressure Reviews how hydrogen embrittlement affects particular sectors such as the petrochemicals, automotive and nuclear industries Discusses how hydrogen embrittlement can be characterised and its effects on particular alloy classes

Structural Alloys for Nuclear Energy Applications

Structural Alloys for Nuclear Energy Applications
Author: Robert Odette
Publisher: Newnes
Total Pages: 673
Release: 2019-08-15
Genre: Technology & Engineering
ISBN: 012397349X


Download Structural Alloys for Nuclear Energy Applications Book in PDF, Epub and Kindle

High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors’ unique personal insight from decades of frontline research, engineering and management. Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.

Advances in Hydrogen Embrittlement Study

Advances in Hydrogen Embrittlement Study
Author: Vladimir A. Polyanskiy
Publisher: Springer Nature
Total Pages: 213
Release: 2021-03-13
Genre: Technology & Engineering
ISBN: 3030669483


Download Advances in Hydrogen Embrittlement Study Book in PDF, Epub and Kindle

The book presents a collection of chapters on the current problems associated with hydrogen damage. It discusses the effect of hydrogen on material properties and its interaction with the material microstructure, physical features of hydrogen transport in metals and alloys, as well as applicable methods of measuring concentration of hydrogen in solid media.

High-Temperature Corrosion and Materials Applications

High-Temperature Corrosion and Materials Applications
Author: George Y. Lai
Publisher: ASM International
Total Pages: 469
Release: 2007-01-01
Genre: Technology & Engineering
ISBN: 1615030557


Download High-Temperature Corrosion and Materials Applications Book in PDF, Epub and Kindle

George Lai's 1990 book, High-Temperature Corrosion of Engineering Alloys, is recognized as authoritative and is frequently consulted and often cited by those in the industry. His new book, almost double in size with seven more chapters, addresses the new concerns, new technologies, and new materials available for those engaged in high-temperature applications. As we strive for energy efficiency, the realm of high-temperature environments is expanding and the need for information on high temperature materials applications was never greater. In addition to extensive expansion on most of the content of the original book, new topics include erosion and erosion-corrosion, low NOx combustion in coal-fired boilers, fluidized bed combustion, and the special demands of waste-to-energy boilers, waste incinerators, and black liquor recovery boilers in the pulp and paper industry. The corrosion induced by liquid metals is discussed and protection options are presented.