Efficient Global Gravity Field Determination from Satellite-to-satellite Tracking

Efficient Global Gravity Field Determination from Satellite-to-satellite Tracking
Author:
Publisher:
Total Pages:
Release: 2003
Genre: Global Positioning System
ISBN:


Download Efficient Global Gravity Field Determination from Satellite-to-satellite Tracking Book in PDF, Epub and Kindle

Abstract: By the middle of this decade, measurements from the CHAMP (CHAllenging of Minisatellite Payload) and GRACE (Gravity Recovery And Climate Experiment) gravity mapping satellite missions are expected to provide a significant improvement in our knowledge of the Earth's mean gravity field and its temporal variation. For this research, new observation equations and efficient inversion method were developed and implemented for determination of the Earth2s global gravity field using satellite measurements. On the basis of the energy conservation principle, in situ (on-orbit) disturbing potential and potential difference observations were computed using data from accelerometer- and GPS receiver-equipped satellites, such as CHAMP and GRACE. The efficient iterative inversion method provided the exact estimates as well as an approximate, but very accurate error variance-covariance matrix of the least squares system for both satellite missions. The global disturbing potential observable computed using 16-days of CHAMP data was used to determine a gravity field solution (OSU02A), is commensurate in geoid accuracy to other gravity models and yields improvement in the polar region at wavelengths longer than 800 km. The annual variation of Earth's gravitational field was estimated and compared with other solutions from satellite laser ranging analysis. The annual geoid change of 1 mm would be expected mostly due to atmosphere, continental surface water, and ocean mass redistribution. The correlation between CHAMP and SLR solutions was 0.6 to approx 0.8 with 0.7 mm of RMS difference. Based on the monthly GRACE simulation, the geoid was obtained with an accuracy of a few cm and with a resolution (half wavelength) of 160 km. However, the geoid accuracy can become worse by a factor of 7 because of spatial aliasing. The approximate error covariance was found to be a very good accuracy measure of the estimated coefficients, geoid, and gravity anomaly. The resulting recovered temporal gravity fields have about 0.2 mm errors in terms of geoid height with a resolution of 670 km. It was quantified that how significant the effects due to the inherent modeling errors and temporal aliasing caused by ocean tides, atmosphere, and ground surface water mass are on monthly mean GRACE gravity estimates.

Global Gravity Field Modeling from Satellite-to-Satellite Tracking Data

Global Gravity Field Modeling from Satellite-to-Satellite Tracking Data
Author: Majid Naeimi
Publisher: Springer
Total Pages: 181
Release: 2017-02-10
Genre: Science
ISBN: 3319499416


Download Global Gravity Field Modeling from Satellite-to-Satellite Tracking Data Book in PDF, Epub and Kindle

This book provides a sound theoretical basis for the the different gravity field recovery methods and the numerics of satellite-to-satellite tracking data. It represents lectures given at the ‘Wilhelm and Else Heraeus Autumn School’ in Bad Honnef, Germany, October 4-9, 2015. The emphasis of the school was on providing a sound theoretical basis for the different gravity field recovery methods and the numerics of data analysis. The approaches covered here are the variational equations (classical approach), the acceleration approach and the energy balance approach, all of which are used for global gravity field recovery on the basis of satellite observations. The theory of parameter estimation in satellite gravimetry and concepts for orbit determination are also included. The book guides readers through a broad range of topics in satellite gravimetry, supplemented by the necessary theoretical background and numerical examples. While it provides a comprehensive overview for those readers who are already familiar with satellite gravity data processing, it also offers an essential reference guide for graduate and undergraduate students interested in this field.

Global Gravity Field Recovery from Satellite-to-satellite Tracking Data with the Acceleration Approach

Global Gravity Field Recovery from Satellite-to-satellite Tracking Data with the Acceleration Approach
Author: Xianglin Liu
Publisher: Netherlands Geodetic Commission
Total Pages: 252
Release: 2008
Genre: Artificial satellites in remote sensing
ISBN:


Download Global Gravity Field Recovery from Satellite-to-satellite Tracking Data with the Acceleration Approach Book in PDF, Epub and Kindle

Contents Abstract xi Samenvatting xv Curriculum vitae xix Acknowledgements xxii 1. Introduction 1 2. Gravity field modeling from SST data: an overview 9 3. Gravity field modeling from CHAMP data 53 4. Gravity field modeling from GRACE hl-SST data 81 5. Gravity field modeling from GRACE ll-SST data 91 6. Analysis of results obtained from the 3RC approach 133 7. Summary, conclusions and recommendations 203 Bibliography 209 A. Autocorrelation 223 B. Gaussian Filtering 225

Global Gravity Field and Its Temporal Variations

Global Gravity Field and Its Temporal Variations
Author: Richard H. Rapp
Publisher: Springer Science & Business Media
Total Pages: 274
Release: 2012-12-06
Genre: Science
ISBN: 3642611400


Download Global Gravity Field and Its Temporal Variations Book in PDF, Epub and Kindle

In July 1995 the XXI General Assembly of the International Union of Geodesy and Geophysics was held in Boulder, Colorado. At this meeting the International Association of Geodesy (lAG) organized a number of symposia to discuss scientific developments and future directions in a number of areas. One of these symposia was G3, Global Gravity Field and Its Temporal Variations. This symposium consisted of four invited and 36 contributed papers. The contributed papers were given as oral or poster presentations. This proceedings volume represents the written contributions of the four invited papers (appearing as the first four papers in the volume) and 19 additional papers. The authors were asked to limit the length of their paper to approximately ten pages, which, in some cases, did limit what an author wanted to say. The papers in this volume have been placed in the same order as they were presented at the ruGG meeting. A key theme of the symposium is given in the paper by Nerem, Klosko, and Pavlis where they discuss applications of gravity field information in geodesy and oceanography. The significant achievements in determining the gravity field in the ocean areas from satellite altimeter data is discussed by Sandwell, Yale, McAdoo, and Smith. A review of time changes of the Earth's gravity field from terrestrial measurements is given by Lambert et aI. , and from satellite perturbation techniques by Eanes and Bettadpur. A description of new geopotential models is given in the paper by Tapley et al.

Geometrical Theory of Satellite Orbits and Gravity Field

Geometrical Theory of Satellite Orbits and Gravity Field
Author: Drazen Svehla
Publisher: Springer
Total Pages: 542
Release: 2018-07-02
Genre: Science
ISBN: 3319768735


Download Geometrical Theory of Satellite Orbits and Gravity Field Book in PDF, Epub and Kindle

This book on space geodesy presents pioneering geometrical approaches in the modelling of satellite orbits and gravity field of the Earth, based on the gravity field missions CHAMP, GRACE and GOCE in the LEO orbit. Geometrical approach is also extended to precise positioning in space using multi-GNSS constellations and space geodesy techniques in the realization of the terrestrial and celestial reference frame of the Earth. This book addresses major new developments that were taking place in space geodesy in the last decade, namely the availability of GPS receivers onboard LEO satellites, the multitude of the new GNSS satellite navigation systems, the huge improvement in the accuracy of satellite clocks and the revolution in the determination of the Earth's gravity field with dedicated satellite missions.