Discrete-Time Inverse Optimal Control for Nonlinear Systems

Discrete-Time Inverse Optimal Control for Nonlinear Systems
Author: Edgar N. Sanchez
Publisher: CRC Press
Total Pages: 268
Release: 2017-12-19
Genre: Technology & Engineering
ISBN: 1466580887


Download Discrete-Time Inverse Optimal Control for Nonlinear Systems Book in PDF, Epub and Kindle

Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). The synthesized discrete-time optimal controller can be directly implemented in real-time systems. The book also proposes the use of recurrent neural networks to model discrete-time nonlinear systems. Combined with the inverse optimal control approach, such models constitute a powerful tool to deal with uncertainties such as unmodeled dynamics and disturbances. Learn from Simulations and an In-Depth Case Study The authors include a variety of simulations to illustrate the effectiveness of the synthesized controllers for stabilization and trajectory tracking of discrete-time nonlinear systems. An in-depth case study applies the control schemes to glycemic control in patients with type 1 diabetes mellitus, to calculate the adequate insulin delivery rate required to prevent hyperglycemia and hypoglycemia levels. The discrete-time optimal and robust control techniques proposed can be used in a range of industrial applications, from aerospace and energy to biomedical and electromechanical systems. Highlighting optimal and efficient control algorithms, this is a valuable resource for researchers, engineers, and students working in nonlinear system control.

Discrete-Time Inverse Optimal Control for Nonlinear Systems

Discrete-Time Inverse Optimal Control for Nonlinear Systems
Author: Edgar Sanchez
Publisher:
Total Pages: 268
Release: 2016
Genre: Mathematics
ISBN:


Download Discrete-Time Inverse Optimal Control for Nonlinear Systems Book in PDF, Epub and Kindle

Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). The synthesized discrete-time optimal controller can be directly implemented in real-time systems. The book also proposes the use of recurrent neural networks to model discrete-time nonlinear systems. Combined with the inverse optimal control approach, such models constitute a powerful tool to deal with uncertainties such as unmodeled dynamics and disturbances. Learn from Simulations and an In-Depth Case Study The authors include a variety of simulations to illustrate the effectiveness of the synthesized controllers for stabilization and trajectory tracking of discrete-time nonlinear systems. An in-depth case study applies the control schemes to glycemic control in patients with type 1 diabetes mellitus, to calculate the adequate insulin delivery rate required to prevent hyperglycemia and hypoglycemia levels. The discrete-time optimal and robust control techniques proposed can be used in a range of industrial applications, from aerospace and energy to biomedical and electromechanical systems. Highlighting optimal and efficient control algorithms, this is a valuable resource for researchers, engineers, and students working in nonlinear system control.

Nonlinear and Optimal Control Systems

Nonlinear and Optimal Control Systems
Author: Thomas L. Vincent
Publisher: John Wiley & Sons
Total Pages: 584
Release: 1997-06-23
Genre: Science
ISBN: 9780471042358


Download Nonlinear and Optimal Control Systems Book in PDF, Epub and Kindle

Designed for one-semester introductory senior-or graduate-level course, the authors provide the student with an introduction of analysis techniques used in the design of nonlinear and optimal feedback control systems. There is special emphasis on the fundamental topics of stability, controllability, and optimality, and on the corresponding geometry associated with these topics. Each chapter contains several examples and a variety of exercises.

Constrained Control and Estimation

Constrained Control and Estimation
Author: Graham Goodwin
Publisher: Springer Science & Business Media
Total Pages: 415
Release: 2006-03-30
Genre: Technology & Engineering
ISBN: 184628063X


Download Constrained Control and Estimation Book in PDF, Epub and Kindle

Recent developments in constrained control and estimation have created a need for this comprehensive introduction to the underlying fundamental principles. These advances have significantly broadened the realm of application of constrained control. - Using the principal tools of prediction and optimisation, examples of how to deal with constraints are given, placing emphasis on model predictive control. - New results combine a number of methods in a unique way, enabling you to build on your background in estimation theory, linear control, stability theory and state-space methods. - Companion web site, continually updated by the authors. Easy to read and at the same time containing a high level of technical detail, this self-contained, new approach to methods for constrained control in design will give you a full understanding of the subject.

Discrete-Time Recurrent Neural Control

Discrete-Time Recurrent Neural Control
Author: Edgar N. Sanchez
Publisher: CRC Press
Total Pages: 292
Release: 2018-09-03
Genre: Technology & Engineering
ISBN: 1351377434


Download Discrete-Time Recurrent Neural Control Book in PDF, Epub and Kindle

The book presents recent advances in the theory of neural control for discrete-time nonlinear systems with multiple inputs and multiple outputs. The simulation results that appear in each chapter include rigorous mathematical analyses, based on the Lyapunov approach, to establish its properties. The book contains two sections: the first focuses on the analyses of control techniques; the second is dedicated to illustrating results of real-time applications. It also provides solutions for the output trajectory tracking problem of unknown nonlinear systems based on sliding modes and inverse optimal control scheme. "This book on Discrete-time Recurrent Neural Control is unique in the literature, with new knowledge and information about the new technique of recurrent neural control especially for discrete-time systems. The book is well organized and clearly presented. It will be welcome by a wide range of researchers in science and engineering, especially graduate students and junior researchers who want to learn the new notion of recurrent neural control. I believe it will have a good market. It is an excellent book after all." — Guanrong Chen, City University of Hong Kong "This book includes very relevant topics, about neural control. In these days, Artificial Neural Networks have been recovering their relevance and well-stablished importance, this due to its great capacity to process big amounts of data. Artificial Neural Networks development always is related to technological advancements; therefore, it is not a surprise that now we are being witnesses of this new era in Artificial Neural Networks, however most of the developments in this research area only focuses on applicability of the proposed schemes. However, Edgar N. Sanchez author of this book does not lose focus and include both important applications as well as a deep theoretical analysis of Artificial Neural Networks to control discrete-time nonlinear systems. It is important to remark that first, the considered Artificial Neural Networks are development in discrete-time this simplify its implementation in real-time; secondly, the proposed applications ranging from modelling of unknown discrete-time on linear systems to control electrical machines with an emphasize to renewable energy systems. However, its applications are not limited to these kind of systems, due to their theoretical foundation it can be applicable to a large class of nonlinear systems. All of these is supported by the solid research done by the author." — Alma Y. Alanis, University of Guadalajara, Mexico "This book discusses in detail; how neural networks can be used for optimal as well as robust control design. Design of neural network controllers for real time applications such as induction motors, boost converters, inverted pendulum and doubly fed induction generators has also been carried out which gives the book an edge over other similar titles. This book will be an asset for the novice to the experienced ones." — Rajesh Joseph Abraham, Indian Institute of Space Science & Technology, Thiruvananthapuram, India

Optimal Control

Optimal Control
Author: Brian D. O. Anderson
Publisher: Courier Corporation
Total Pages: 465
Release: 2007-02-27
Genre: Technology & Engineering
ISBN: 0486457664


Download Optimal Control Book in PDF, Epub and Kindle

Numerous examples highlight this treatment of the use of linear quadratic Gaussian methods for control system design. It explores linear optimal control theory from an engineering viewpoint, with illustrations of practical applications. Key topics include loop-recovery techniques, frequency shaping, and controller reduction. Numerous examples and complete solutions. 1990 edition.

Feedback Control for Personalized Medicine

Feedback Control for Personalized Medicine
Author: Esteban A. Hernandez-Vargas
Publisher: Academic Press
Total Pages: 248
Release: 2022-04-21
Genre: Science
ISBN: 0323906656


Download Feedback Control for Personalized Medicine Book in PDF, Epub and Kindle

Feedback Control for Personalized Medicine provides ideas on ongoing efforts and obstacles by members of the control engineering community in different biological and medical applications. In addition, the book presents key challenges, insights, tools and theoretical developments that arise from personalized medicine, along with medical concepts that are explained by engineers to help non-experts follow research topics. Several clinical trials have tried to find therapeutic approaches to achieve eradication or at least lifelong, therapy-free, host control of the infection. This has been performed integrating clinical observations, empirical knowledge and information from medical tests to treat patients. As this “trial and error approach is becoming more challenging and unfeasible by the steep increase in the number of different pieces of information and the complexity of large datasets, a systematic and tractable approach that integrates a variety of biological and medical research data into mathematical models and computational algorithms is crucial to harness knowledge and to develop new therapies towards personalized medicine. Presents the most recent research in personalized medicine using control theoretical tools Offers numerical simulations that are analyzed in detail and compared with control experiments Brings the most recent research of control theory in medicine

Discrete-Time Recurrent Neural Control

Discrete-Time Recurrent Neural Control
Author: Edgar N. Sanchez
Publisher: CRC Press
Total Pages: 205
Release: 2018-09-03
Genre: Technology & Engineering
ISBN: 1351377426


Download Discrete-Time Recurrent Neural Control Book in PDF, Epub and Kindle

The book presents recent advances in the theory of neural control for discrete-time nonlinear systems with multiple inputs and multiple outputs. The simulation results that appear in each chapter include rigorous mathematical analyses, based on the Lyapunov approach, to establish its properties. The book contains two sections: the first focuses on the analyses of control techniques; the second is dedicated to illustrating results of real-time applications. It also provides solutions for the output trajectory tracking problem of unknown nonlinear systems based on sliding modes and inverse optimal control scheme. "This book on Discrete-time Recurrent Neural Control is unique in the literature, with new knowledge and information about the new technique of recurrent neural control especially for discrete-time systems. The book is well organized and clearly presented. It will be welcome by a wide range of researchers in science and engineering, especially graduate students and junior researchers who want to learn the new notion of recurrent neural control. I believe it will have a good market. It is an excellent book after all." — Guanrong Chen, City University of Hong Kong "This book includes very relevant topics, about neural control. In these days, Artificial Neural Networks have been recovering their relevance and well-stablished importance, this due to its great capacity to process big amounts of data. Artificial Neural Networks development always is related to technological advancements; therefore, it is not a surprise that now we are being witnesses of this new era in Artificial Neural Networks, however most of the developments in this research area only focuses on applicability of the proposed schemes. However, Edgar N. Sanchez author of this book does not lose focus and include both important applications as well as a deep theoretical analysis of Artificial Neural Networks to control discrete-time nonlinear systems. It is important to remark that first, the considered Artificial Neural Networks are development in discrete-time this simplify its implementation in real-time; secondly, the proposed applications ranging from modelling of unknown discrete-time on linear systems to control electrical machines with an emphasize to renewable energy systems. However, its applications are not limited to these kind of systems, due to their theoretical foundation it can be applicable to a large class of nonlinear systems. All of these is supported by the solid research done by the author." — Alma Y. Alanis, University of Guadalajara, Mexico "This book discusses in detail; how neural networks can be used for optimal as well as robust control design. Design of neural network controllers for real time applications such as induction motors, boost converters, inverted pendulum and doubly fed induction generators has also been carried out which gives the book an edge over other similar titles. This book will be an asset for the novice to the experienced ones." — Rajesh Joseph Abraham, Indian Institute of Space Science & Technology, Thiruvananthapuram, India