Microfluidics in Detection Science

Microfluidics in Detection Science
Author: Fatima H Labeed
Publisher: Royal Society of Chemistry
Total Pages: 295
Release: 2014-10-24
Genre: Science
ISBN: 1849737606


Download Microfluidics in Detection Science Book in PDF, Epub and Kindle

The concept of a miniaturised laboratory on a disposable chip is now a reality, and in everyday use in industry, medicine and defence. New devices are launched all the time, prompting the need for a straightforward guide to the design and manufacture of lab-on-a-chip (LOC) devices. This book presents a modular approach to the construction and integration of LOC components in detection science. The editors have brought together some of the leading experts from academia and industry to present an accessible guide to the technology available and its potential. Several chapters are devoted to applications, presenting both the sampling regime and detection methods needed. Further chapters describe the integration of LOC devices, not only with each other but also into existing technologies. With insights into LOC applications, from biosensing to molecular and chemical analysis, and presenting scaled-down versions of existing technology alongside unique approaches that exploit the physics of the micro and nano-scale, this book will appeal to newcomers to the field and practitioners requiring a convenient reference.

Digital Microfluidics for Integration of Lab-on-a-chip Devices

Digital Microfluidics for Integration of Lab-on-a-chip Devices
Author: Mohamad Omar Ahmad Abdelgawad
Publisher:
Total Pages: 302
Release: 2009
Genre:
ISBN: 9780494590379


Download Digital Microfluidics for Integration of Lab-on-a-chip Devices Book in PDF, Epub and Kindle

Digital microfluidics is a new technology that permits manipulation of liquid droplets on an array of electrodes. Using this technology, nanoliter to microliter size droplets of different samples and reagents can be dispensed from reservoirs, moved, split, and merged together. Digital microfluidics is poised to become an important and useful tool for biomedical applications because of its capacity to precisely and automatically carry out sequential chemical reactions. In this thesis, a set of tools is presented to accelerate the integration of digital microfluidics into Lab-on-a-Chip platforms for a wide range of applications.An important contribution in this thesis is the development of three rapid prototyping techniques, including the use of laser printing to pattern flexible printed circuit board (PCB) substrates, to make the technology accessible and less expensive. Using these techniques, both digital and channel microfluidic devices can be produced in less than 30 minutes at a minimal cost. These rapid prototyping techniques led to a new method for manipulating liquid droplets on non-planar surfaces. The method, called All Terrain Droplet Actuation (ATDA), was used for several applications, including DNA enrichment by liquid-liquid extraction. ATDA has great potential for the integration of different physico-chemical environments on Lab-on-a-Chip devices.A second important contribution described herein is the development of a new microfluidic format, hybrid microfluidics, which combines digital and channel microfluidics on the same platform. The new hybrid device architecture was used to perform biological sample processing (e.g. enzymatic digestion and fluorescent labeling) followed by electrophoretic separation of the analytes. This new format will facilitate complete automation of Lab-on-a-Chip devices and will eliminate the need for extensive manual sample processing (e.g. pipetting) or expensive robotic stations.Finally, numerical modeling of droplet actuation on single-plate digital microfluidic devices, using electrodynamics, was used to evaluate the droplet actuation forces. Modeling results were verified experimentally using an innovative technique that estimates actuation forces based on resistive forces against droplet motion. The results suggested a list of design tips to produce better devices. It is hoped that the work presented in this thesis will help introduce digital microfluidics to many of the existing Lab-on-a-Chip applications and inspire the development of new ones.

Lab-on-a-Chip Devices and Micro-Total Analysis Systems

Lab-on-a-Chip Devices and Micro-Total Analysis Systems
Author: Jaime Castillo-León
Publisher: Springer
Total Pages: 246
Release: 2014-11-05
Genre: Technology & Engineering
ISBN: 3319086871


Download Lab-on-a-Chip Devices and Micro-Total Analysis Systems Book in PDF, Epub and Kindle

This book covers all the steps in order to fabricate a lab-on-a-chip device starting from the idea, the design, simulation, fabrication and final evaluation. Additionally, it includes basic theory on microfluidics essential to understand how fluids behave at such reduced scale. Examples of successful histories of lab-on-a-chip systems that made an impact in fields like biomedicine and life sciences are also provided. This book also: · Provides readers with a unique approach and toolset for lab-on-a-chip development in terms of materials, fabrication techniques, and components · Discusses novel materials and techniques, such as paper-based devices and synthesis of chemical compounds on-chip · Covers the four key aspects of development: basic theory, design, fabrication, and testing · Provides readers with a comprehensive list of the most important journals, blogs, forums, and conferences where microfluidics and lab-on-a-chip news, methods, techniques and challenges are presented and discussed, as well as a list of companies providing design and simulation support, components, and/or developing lab-on-a-chip and microfluidic devices.

Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip

Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip
Author: Xiujun (James) Li
Publisher: Newnes
Total Pages: 486
Release: 2021-09-19
Genre: Science
ISBN: 0444594612


Download Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip Book in PDF, Epub and Kindle

Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip: Principles and Applications provides chemists, biophysicists, engineers, life scientists, biotechnologists, and pharmaceutical scientists with the principles behind the design, manufacture, and testing of life sciences microfluidic systems. This book serves as a reference for technologies and applications in multidisciplinary areas, with an emphasis on quickly developing or new emerging areas, including digital microfluidics, nanofluidics, papers-based microfluidics, and cell biology. The book offers practical guidance on how to design, analyze, fabricate, and test microfluidic devices and systems for a wide variety of applications including separations, disease detection, cellular analysis, DNA analysis, proteomics, and drug delivery. Calculations, solved problems, data tables, and design rules are provided to help researchers understand microfluidic basic theory and principles and apply this knowledge to their own unique designs. Recent advances in microfluidics and microsystems for life sciences are impacting chemistry, biophysics, molecular, cell biology, and medicine for applications that include DNA analysis, drug discovery, disease research, and biofluid and environmental monitoring. Provides calculations, solved problems, data tables and design rules to help understand microfluidic basic theory and principles Gives an applied understanding of the principles behind the design, manufacture, and testing of microfluidic systems Emphasizes on quickly developing and emerging areas, including digital microfluidics, nanofluidics, papers-based microfluidics, and cell biology

Lab-on-a-Chip Fabrication and Application

Lab-on-a-Chip Fabrication and Application
Author: Margarita Stoytcheva
Publisher: BoD – Books on Demand
Total Pages: 210
Release: 2016-06-29
Genre: Science
ISBN: 9535124579


Download Lab-on-a-Chip Fabrication and Application Book in PDF, Epub and Kindle

The necessity of on-site, fast, sensitive, and cheap complex laboratory analysis, associated with the advances in the microfabrication technologies and the microfluidics, made it possible for the creation of the innovative device lab-on-a-chip (LOC), by which we would be able to scale a single or multiple laboratory processes down to a chip format. The present book is dedicated to the LOC devices from two points of view: LOC fabrication and LOC application.

Microfluidics

Microfluidics
Author: Yujun Song
Publisher: John Wiley & Sons
Total Pages: 579
Release: 2018-01-04
Genre: Science
ISBN: 352780062X


Download Microfluidics Book in PDF, Epub and Kindle

The first book offering a global overview of fundamental microfluidics and the wide range of possible applications, for example, in chemistry, biology, and biomedical science. As such, it summarizes recent progress in microfluidics, including its origin and development, the theoretical fundamentals, and fabrication techniques for microfluidic devices. The book also comprehensively covers the fluid mechanics, physics and chemistry as well as applications in such different fields as detection and synthesis of inorganic and organic materials. A useful reference for non-specialists and a basic guideline for research scientists and technicians already active in this field or intending to work in microfluidics.

Microfluidics and Lab-on-a-Chip

Microfluidics and Lab-on-a-Chip
Author: Andreas Manz
Publisher: Royal Society of Chemistry
Total Pages: 307
Release: 2020-09-24
Genre: Science
ISBN: 1782628339


Download Microfluidics and Lab-on-a-Chip Book in PDF, Epub and Kindle

Responding to the need for an affordable, easy-to-read textbook that introduces microfluidics to undergraduate and postgraduate students, this concise book will provide a broad overview of the important theoretical and practical aspects of microfluidics and lab-on-a-chip, as well as its applications.

Microfluidic Devices for Biomedical Applications

Microfluidic Devices for Biomedical Applications
Author: Xiujun James Li
Publisher: Woodhead Publishing
Total Pages: 0
Release: 2013-10-31
Genre: Technology & Engineering
ISBN: 9780857096975


Download Microfluidic Devices for Biomedical Applications Book in PDF, Epub and Kindle

Microfluidics or lab-on-a-chip (LOC) is an important technology suitable for numerous applications from drug delivery to tissue engineering. Microfluidic devices for biomedical applications discusses the fundamentals of microfluidics and explores in detail a wide range of medical applications. The first part of the book reviews the fundamentals of microfluidic technologies for biomedical applications with chapters focussing on the materials and methods for microfabrication, microfluidic actuation mechanisms and digital microfluidic technologies. Chapters in part two examine applications in drug discovery and controlled-delivery including micro needles. Part three considers applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds and stem cell engineering. The final part of the book covers the applications of microfluidic devices in diagnostic sensing, including genetic analysis, low-cost bioassays, viral detection, and radio chemical synthesis. Microfluidic devices for biomedical applications is an essential reference for medical device manufacturers, scientists and researchers concerned with microfluidics in the field of biomedical applications and life-science industries.

Microfluidics for Biologists

Microfluidics for Biologists
Author: Chandra K. Dixit
Publisher: Springer
Total Pages: 256
Release: 2016-10-13
Genre: Medical
ISBN: 3319400363


Download Microfluidics for Biologists Book in PDF, Epub and Kindle

This book describes novel microtechnologies and integration strategies for developing a new class of assay systems to retrieve desired health information from patients in real-time. The selection and integration of sensor components and operational parameters for developing point-of-care (POC) are also described in detail. The basics that govern the microfluidic regimen and the techniques and methods currently employed for fabricating microfluidic systems and integrating biosensors are thoroughly covered. This book also describes the application of microfluidics in the field of cell and molecular biology, single cell biology, disease diagnostics, as well as the commercially available systems that have been either introduced or have the potential of being used in research and development. This is an ideal book for aiding biologists in understanding the fundamentals and applications of microfluidics. This book also: Describes the preparatory methods for developing 3-dimensional microfluidic structures and their use for Lab-on-a-Chip design Explains the significance of miniaturization and integration of sensing components to develop wearable sensors for point-of-care (POC) Demonstrates the application of microfluidics to life sciences and analytical chemistry, including disease diagnostics and separations Motivates new ideas related to novel platforms, valving technology, miniaturized transduction methods, and device integration to develop next generation sequencing Discusses future prospects and challenges of the field of microfluidics in the areas of life sciences in general and diagnostics in particular