Dielectric Polymer Materials for High-Density Energy Storage

Dielectric Polymer Materials for High-Density Energy Storage
Author: Zhi-Min Dang
Publisher: William Andrew
Total Pages: 502
Release: 2018-06-13
Genre: Technology & Engineering
ISBN: 0128132167


Download Dielectric Polymer Materials for High-Density Energy Storage Book in PDF, Epub and Kindle

Dielectric Polymer Materials for High-Density Energy Storage begins by introducing the fundamentals and basic theories on the dielectric behavior of material. It then discusses key issues on the design and preparation of dielectric polymer materials with strong energy storage properties, including their characterization, properties and manipulation. The latest methods, techniques and applications are explained in detail regarding this rapidly developing area. The book will support the work of academic researchers and graduate students, as well as engineers and materials scientists working in industrial research and development. In addition, it will be highly valuable to those directly involved in the fabrication of capacitors in industry, and to researchers across the areas of materials science, polymer science, materials chemistry, and nanomaterials. Focuses on how to design and prepare dielectric polymer materials with strong energy storage properties Includes new techniques for adjusting the properties of dielectric polymer materials Presents a thorough review of the state-of-the-art in the field of dielectric polymer materials, providing valuable insights into potential avenues of development

High Temperature Polymer Dielectrics

High Temperature Polymer Dielectrics
Author: Jun-Wei Zha
Publisher: John Wiley & Sons
Total Pages: 405
Release: 2024-01-24
Genre:
ISBN: 3527351825


Download High Temperature Polymer Dielectrics Book in PDF, Epub and Kindle

Provides a complete overview of the state-of-the-art high temperature polymer dielectrics, with a focus on fundamental background and recent advances.

Ferroelectric Materials for Energy Applications

Ferroelectric Materials for Energy Applications
Author: Haitao Huang
Publisher: John Wiley & Sons
Total Pages: 384
Release: 2019-01-04
Genre: Technology & Engineering
ISBN: 3527342710


Download Ferroelectric Materials for Energy Applications Book in PDF, Epub and Kindle

Provides a comprehensive overview of the emerging applications of ferroelectric materials in energy harvesting and storage Conventional ferroelectric materials are normally used in sensors and actuators, memory devices, and field effect transistors, etc. Recent progress in this area showed that ferroelectric materials can harvest energy from multiple sources including mechanical energy, thermal fluctuations, and light. This book gives a complete summary of the novel energy-related applications of ferroelectric materials?and reviews both the recent advances as well as the future perspectives in this field. Beginning with the fundamentals of ferroelectric materials, Ferroelectric Materials for Energy Applications offers in-depth chapter coverage of: piezoelectric energy generation; ferroelectric photovoltaics; organic-inorganic hybrid perovskites for solar energy conversion; ferroelectric ceramics and thin films in electric energy storage; ferroelectric polymer composites in electric energy storage; pyroelectric energy harvesting; ferroelectrics in electrocaloric cooling; ferroelectric in photocatalysis; and first-principles calculations on ferroelectrics for energy applications. -Covers a highly application-oriented subject with great potential for energy conversion and storage applications. -Focused toward a large, interdisciplinary group consisting of material scientists, solid state physicists, engineering scientists, and industrial researchers -Edited by the "father of integrated ferroelectrics" Ferroelectric Materials for Energy Applications is an excellent book for researchers working on ferroelectric materials and energy materials, as well as engineers looking to broaden their view of the field.

Polymer Composites for Electrical Engineering

Polymer Composites for Electrical Engineering
Author: Xingyi Huang
Publisher: John Wiley & Sons
Total Pages: 452
Release: 2021-11-01
Genre: Technology & Engineering
ISBN: 1119719607


Download Polymer Composites for Electrical Engineering Book in PDF, Epub and Kindle

Explore the diverse electrical engineering application of polymer composite materials with this in-depth collection edited by leaders in the field Polymer Composites for Electrical Engineering delivers a comprehensive exploration of the fundamental principles, state-of-the-art research, and future challenges of polymer composites. Written from the perspective of electrical engineering applications, like electrical and thermal energy storage, high temperature applications, fire retardance, power cables, electric stress control, and others, the book covers all major application branches of these widely used materials. Rather than focus on polymer composite materials themselves, the distinguished editors have chosen to collect contributions from industry leaders in the area of real and practical electrical engineering applications of polymer composites. The books relevance will only increase as advanced polymer composites receive more attention and interest in the area of advanced electronic devices and electric power equipment. Unique amongst its peers, Polymer Composites for Electrical Engineering offers readers a collection of practical and insightful materials that will be of great interest to both academic and industrial audiences. Those resources include: A comprehensive discussion of glass fiber reinforced polymer composites for power equipment, including GIS, bushing, transformers, and more) Explorations of polymer composites for capacitors, outdoor insulation, electric stress control, power cable insulation, electrical and thermal energy storage, and high temperature applications A treatment of semi-conductive polymer composites for power cables In-depth analysis of fire-retardant polymer composites for electrical engineering An examination of polymer composite conductors Perfect for postgraduate students and researchers working in the fields of electrical, electronic, and polymer engineering, Polymer Composites for Electrical Engineering will also earn a place in the libraries of those working in the areas of composite materials, energy science and technology, and nanotechnology.

Dielectric Materials for Capacitive Energy Storage

Dielectric Materials for Capacitive Energy Storage
Author: Haibo Zhang
Publisher: CRC Press
Total Pages: 217
Release: 2024-10-02
Genre: Science
ISBN: 1040123988


Download Dielectric Materials for Capacitive Energy Storage Book in PDF, Epub and Kindle

Due to growing energy demands, the development of high-energy storage density dielectric materials for energy storage capacitors has become a top priority. Dielectric Materials for Capacitive Energy Storage focuses on the research and application of dielectric materials for energy storage capacitors. It provides a detailed summary of dielectric properties and polarization mechanism of dielectric materials and analyzes several international cases based on the latest research progress. • Explains advantages and development potential of dielectric capacitors. • Discusses energy storage principles of dielectric materials as well as effects of polarization and breakdown mechanisms on energy storage performance. • Summarizes achievements and progress of inorganic and organic dielectric materials as well as multidimensional composites. • Details applications and features international case studies. • Offers unique insights into existing issues and forecasts for future research priorities. With its summary and large-scale analysis of the fields related to dielectric energy storage, this book will benefit scholars, researchers, and advanced students in materials, electrical, chemical, and other areas of engineering working on capacitors and energy storage.

High Energy Density, and Low Loss Polymer Dielectrics for Energy Storage Capacitors and Organic Electronics

High Energy Density, and Low Loss Polymer Dielectrics for Energy Storage Capacitors and Organic Electronics
Author: Shan Wu
Publisher:
Total Pages:
Release: 2014
Genre:
ISBN:


Download High Energy Density, and Low Loss Polymer Dielectrics for Energy Storage Capacitors and Organic Electronics Book in PDF, Epub and Kindle

Electrical energy storage devices are among the most important components for a broad range of applications in modern electronics and electrical power systems such as hybrid electric vehicles (HEV), medical defibrillators, filters, and switched-mode power supplies. Due to these applications, electrical energy storage devices have been growing rapidly in recent years. Desired properties of the dielectrics for energy storage include high electric energy density, high charge-discharge efficiency, high electric breakdown, and high operation temperature. Compared with ceramic capacitors, polymer thin film capacitors are inexpensive, possess high dielectric strength, high energy density and low dielectric loss, and fail gracefully. The continuous miniaturization and increased functionality in modern electronics and electric power systems demand further increases in energy and power density of dielectric materials since these capacitors contribute significant (>30%) volume and weight to systems. One major challenge in developing dielectric polymers is realizing high energy density while maintaining low dielectric loss, even when high electric fields are applied. The traditional dielectric polymers have a relatively low dielectric constant around 2-3, and the energy density is limited to below 5 J/cm3. Recently, PVDF (polyvinylidene fluoride) based dielectric polymers such as P(VDF-CTFE) (CTFE: chlorotrifluoroethylene) and P(VDF-HFP) (HFP: hexafluoropropylene) have been studied and demonstrated to achieve very high energy densities (>25 J/cm3). Unfortunately, it is still a challenge to reduce the ferroelectric loss in PVDF based polymers by the strongly coupled dipoles and the high electric field conduction loss. Two approaches are introduced in this dissertation on how to develop the next generation polymer dielectrics with high energy density, low loss, high breakdown strength, and high temperature stability. The first approach is modification of high K polymer dielectrics to reduce the ferroelectric loss and conduction loss. The second approach is start from intrinsically low loss materials, then enhance the dielectric properties by increasing the dipole moment and dipole density.A polar-fluoropolymer blend consisting of a high energy density P(VDF-CTFE) and a low dielectric loss poly(ethylene-chlorotrifluoroethylene) (ECTFE) was developed. Both the blend and crosslinked blend films exhibit a dielectric constant of 7 and low loss (1%), as expected from the classical composite theory. Moreover, introducing crosslinking can lead to a marked reduction of losses in blend films at high electric fields while maintaining a high energy density. At 250 MV/m, a loss of 3% can be achieved in the crosslinked blend compared with 7% loss in pure blend, which is already much below that of pure P(VDF-CTFE) (35%). Furthermore, uniaxially stretch can improve the dielectric breakdown strength and mechanical properties.The promise of aromatic, amorphous, and polar polymers containing high dipolar moments with very low defect levels is demonstrated for future dielectric materials with ultrahigh electric-energy density, low loss at high applied fields, and ultrahigh breakdown strengths. Specifically, an amorphous, polar, and glass-phase dielectric polymer aromatic polythiourea (ArPTU) features extremely high dielectric breakdown strength (>1.1 GV/m), low loss at high electric fields (10% at 1.1 GV/m), and a high maximum electrical energy density (>24 J/cm3). This dissertation presents a study of the structure-property relationships and electrical properties study in ArPTU, and offers a phenomenological explanation for the experimentally observed high-field loss characteristics which facilitate the excellent energy storage properties.Besides the aromatic polythiourea, meta-aromatic polyurea (meta-PU) was developed and investigated for energy storage capacitors. Modifications to the molecular structure can tune the dipolar density and dipole moment in the polyurea systems to improve the dielectric properties. The meta-PU has an enhanced dielectric constant from the higher volume dipolar density, higher energy density, and a high electrical breakdown. A high storage electrical energy density of 13 J/cm3 with energy storage efficiency of 91% can be achieved at 670 MV/m electric field. Other polyureas, polythioureas based dielectrics with tunable dielectric properties are also summarized.Polymer dielectrics possessing high dielectric constant, low loss are not only of great importance for energy storage capacitors, but also attractive as gate dielectrics in organic thin film field effect transistors (OTFTs). In this work, solution processable PVDF based polymers, with tunable dielectric constant from 7 to more than 50 as well as ferroelectricity, were used as the gate insulator in bottom gated OTFTs with a pentacene semiconductor layer. Due to the high dielectric constant of P(VDF-TrFE-CFE), a large capacitive coupling between the gate and channel can be achieved which causes a high charge concentration at the interface of the semiconductor and dielectric layers. In devices with the P(VDF-TrFE-CFE) dielectric layer, high performances and a low minimum operation gate voltage (5-10 V) were attained. Also, the ferroelectric thin film transistor with the P(VDF-TrFE) dielectric has a high remnant polarization, which is desired for memory applications.

Advanced Dielectric Materials for Electrostatic Capacitors

Advanced Dielectric Materials for Electrostatic Capacitors
Author: Qi Li
Publisher: Energy Engineering
Total Pages: 448
Release: 2020-09
Genre: Technology & Engineering
ISBN: 9781785619885


Download Advanced Dielectric Materials for Electrostatic Capacitors Book in PDF, Epub and Kindle

This book provides an overview of key dielectric materials for capacitor technology. It covers preparation and characterization of state-of-the art dielectric materials including ceramics, polymers and polymer nanocomposites, for popular applications including energy storage, microwave communication and multi-layer ceramic capacitors.

Emerging Nanodielectric Materials for Energy Storage

Emerging Nanodielectric Materials for Energy Storage
Author: Srikanta Moharana
Publisher: Springer Nature
Total Pages: 442
Release: 2023-10-30
Genre: Science
ISBN: 3031409388


Download Emerging Nanodielectric Materials for Energy Storage Book in PDF, Epub and Kindle

This contributed volume presents multiple techniques for the synthesis of nanodielectric materials and their composites and examines their applications in the field of energy storage. It overviews various methods for designing these materials and analyses their properties such as mechanical strength, flexibility, dielectric as well as electrical performances for end-user applications such as thin-film flexible capacitors, advanced energy storage capacitors, and supercapacitors. The book gives a special focus on examining the dielectric properties of polymer-based nanomaterials, core-shell structured nanomaterials, and graphene-based polymeric composites among others, and explains the importance of their use in the aforementioned energy storage applications. It provides a great platform for understanding and expanding technological solutions needed for global energy challenges and it is of great benefit to industry professionals, academic researchers, material scientists, engineers, graduate students, physicists, and chemists working in the area of nanodielectrics.

MATERIALS DESIGN OF DIELECTRIC POLYMERS FOR ENERGY STORAGE, ELECTROCALORIC COOLING, AND ELECTRO-ACTUATORS.

MATERIALS DESIGN OF DIELECTRIC POLYMERS FOR ENERGY STORAGE, ELECTROCALORIC COOLING, AND ELECTRO-ACTUATORS.
Author: Xin Chen
Publisher:
Total Pages: 0
Release: 2022
Genre:
ISBN:


Download MATERIALS DESIGN OF DIELECTRIC POLYMERS FOR ENERGY STORAGE, ELECTROCALORIC COOLING, AND ELECTRO-ACTUATORS. Book in PDF, Epub and Kindle

The objective of this research aims at developing dielectric polymers for improved performance in applications of energy storage, electrocaloric cooling, and electro-actuators. In dielectrics for electric energy storage, dielectric constant, dielectric loss, electrical breakdown strength, charge-discharge efficiency (loss at high electric fields), and operation temperature are the key parameters. Compared with inorganic counterpart, dielectric polymers possess low dielectric loss, low cost, and high breakdown strength. Biaxially oriented polypropylene (BOPP), the state of art dielectric polymer, possesses high breakdown strength (Eb > 600 MV/m) and low dielectric loss (0.02%).. However, the low dielectric constant (K = 2.2) limits the energy density of BOPP capacitors to 2 J/cm3, since the energy density of capacitors Ue = 1/2 K[epsilon]0E2, where [epsilon]0 is the vacuum permittivity. The low working temperature ( 80 oC) of BOPP capacitors also limits their applications and often requires additional cooling loops to maintain safe operation. Hence, recent efforts on new high-performance dielectric polymers focus on high glass transition temperature polymers (Tg 200 oC), for example, how to improve the performance of polyimide (PI) and polyetherimide (PEI). Polymer nanocomposites have been investigated for decades in raising K and Ue. However, the traditional approach of adding high dielectric constant (K 1000) inorganic nanomaterials, which usually needs the fillers to be 15 vol%, has achieved limited success. The large dielectric contrast between the nanofillers and polymer matrix results in intensification of local electric fields in the polymer matrix, leading to a large reduction of the dielectric breakdown strength in polymer composites with high-volume loading of nanofillers. In recent years, Zhang's group discovered and developed a class of dilute nanocomposites. For example, it has been shown that in polyetherimide (PEI) (K~3.2), very low volume loading ( 0.5 vol%) of nanofillers can lead to more than 50% increase in the dielectric constant K while retaining the high breakdown strength and low dielectric loss. The enhancement of dielectric constant does not depend on the dielectric constant of the fillers, but depends on the geometry size of the fillers, which suggests a strong interfacial effect. In this thesis, I will present the in-depth study on the change of polymer morphologies in the presence of ultra-low nanoparticles. The studies will focus on 1) the influence of nanoparticle surface, 2) solvents induced change of polymer morphologies, and 3) in-situ structural analysis of polymer matrix around nanoparticle surface. The thesis also studied the topological effect of nanofillers in the dilute nanocomposites. The results show that 1-D nanofillers (nanorods) at ultralow volume loading ( 1 vol%) generate larger dielectric enhancement of the dielectric response of PEI (from 3.2 to 6.1), compared with 0-D nanofillers (nanoparticles). Different from a spherical shell interface nano-topology of 0-D nanofillers, the cylindrical shell nanostructures generated by 1-D nanofillers are much more efficient in raising the dipolar response in terms of extending the high K in the interfacial region and reducing the influence of low K polymer regions. One driving force for the dielectric enhancement in the dilute nanocomposites is the increased local free-volumes. In this thesis, the approach of polymer blending will also be used control and tailor the free-volumes in high Tg polymers. It was observed that the chain packing in the blends can be tuned by the electrostatic interactions between polymer chains. Consequently, by properly matching the two polymers in the blends, one can achieve enhanced breakdown strength or enhanced dielectric constant. PVDF based ferroelectric polymers have been used for electromechanical (EM) energy conversion applications. On the other hand, there is a great need to improve the EM performance of ferroelectric polymers (due to their low EM performance compared with the inorganic counterpart). This thesis studied "defect modifications" of the relaxor ferroelectric P(VDF-TrFE-CFE) terpolymers and show that small amount of FA (fluorinated alkynes) units ( 2 mol%) in the relaxor polymers can effectively suppress the polarizations which do not contribute much to the EM response while enhancing the polarizations which have a strong EM coupling. As a result, the FA modified terpolymers exhibit marked enhancement of EM responses at low electric fields (

Dielectric Polymer Nanocomposites

Dielectric Polymer Nanocomposites
Author: J. Keith Nelson
Publisher: Springer Science & Business Media
Total Pages: 374
Release: 2009-12-17
Genre: Technology & Engineering
ISBN: 1441915915


Download Dielectric Polymer Nanocomposites Book in PDF, Epub and Kindle

Dielectric Polymer Nanocomposites provides the first in-depth discussion of nano-dielectrics, an emerging and fast moving topic in electrical insulation. The text begins with an overview of the background, principles and promise of nanodielectrics, followed by a discussion of the processing of nanocomposites and then proceeds with special considerations of clay based processes, mechanical, thermal and electric properties and surface properties as well as erosion resistance. Carbon nanotubes are discussed as a means of creation of non linear conductivity, the text concludes with a industrial applications perspective.