Development of Vitrification Process and Glass Formulation for Nuclear Waste Conditioning

Development of Vitrification Process and Glass Formulation for Nuclear Waste Conditioning
Author:
Publisher:
Total Pages: 9
Release: 2002
Genre:
ISBN:


Download Development of Vitrification Process and Glass Formulation for Nuclear Waste Conditioning Book in PDF, Epub and Kindle

The vitrification of high-level waste is the internationally recognized standard to minimize the impact to the environment resulting from waste disposal as well as to minimize the volume of conditioned waste to be disposed of. COGEMA has been vitrifying high-level waste industrially for over 20 years and is currently operating three commercial vitrification facilities based on a hot metal crucible technology, with outstanding records of safety, reliability and product quality. To further increase the performance of vitrification facilities, CEA and COGEMA have been developing the cold crucible melter technology since the beginning of the 1980s. This type of melter is characterized by a virtually unlimited equipment service life and a great flexibility in dealing with various types of waste and allowing development of high temperature matrices. In complement of and in parallel with the vitrification process, a glass formulation methodology has been developed by the CEA in order to tailor matrices for the wastes to be conditioned while providing the best adaptation to the processing technology. The development of a glass formulation is a trade-off between material properties and qualities, technical feasibility, and disposal safety criteria. It involves non-radioactive and radioactive laboratories in order to achieve a comprehensive matrix qualification. Several glasses and glass ceramics have thus been studied by the CEA to be compliant with industrial needs and waste characteristics: glasses or other matrices for a large spectrum of fission products, or for high contents of specifics elements such as sodium, phosphate, iron, molybdenum, or actinides. New glasses or glass-ceramics designed to minimize the final wasteform volume for solutions produced during the reprocessing of high burnup fuels or to treat legacy wastes are now under development and take benefit from the latest CEA hot-laboratories and technology development. The paper presents the CEA state-of-the-art in developing matrices or glasses and provides several examples.

The Incorporation of P, S, Cr, F, Cl, I, Mn, Ti, U, and Bi Into Simulated Nuclear Waste Glasses

The Incorporation of P, S, Cr, F, Cl, I, Mn, Ti, U, and Bi Into Simulated Nuclear Waste Glasses
Author:
Publisher:
Total Pages: 90
Release: 1996
Genre:
ISBN:


Download The Incorporation of P, S, Cr, F, Cl, I, Mn, Ti, U, and Bi Into Simulated Nuclear Waste Glasses Book in PDF, Epub and Kindle

Waste currently stored on the Hanford Reservation in underground tanks will be into High Level Waste (HLW) and Low Level Waste (LLW). The HLW melter will high-level and transuranic wastes to a vitrified form for disposal in a geological repository. The LLW melter will vitrify the low-level waste which is mainly a sodium solution. Characterization of the tank wastes is still in progress, and the pretreatment processes are still under development Apart from tank-to-tank variations, the feed delivered to the HLW melter will be subject to process control variability which consists of blending and pretreating the waste. The challenge is then to develop glass formulation models which can produce durable and processable glass compositions for all potential vitrification feed compositions and processing conditions. The work under HLW glass formulation is to study and model glass and melt pro functions of glass composition and temperature. The properties of interest include viscosity, electrical conductivity, liquidus temperature, crystallization, immiscibility durability. It is these properties that determine the glass processability and ac waste glass. Apart from composition, some properties, such as viscosity are affected by temperature. The processing temperature may vary from 1050°C to 1550°C dependent upon the melter type. The glass will also experience a temperature profile upon cooling. The purpose of this letter report is to assess the expected vitrification feed compositions for critical components with the greatest potential impact on waste loading for double shell tank (DST) and single shell tank (SST) wastes. The basis for critical component selection is identified along with the planned approach for evaluation. The proposed experimental work is a crucial part of model development and verification.

Nuclear Waste Conditioning

Nuclear Waste Conditioning
Author: France. Commissariat à l'énergie atomique (CEA)
Publisher: Le Moniteur Editions
Total Pages: 160
Release: 2009
Genre: Science
ISBN:


Download Nuclear Waste Conditioning Book in PDF, Epub and Kindle

Glass Formulation Development for the Vitrification of Oak Ridge Tank Waste

Glass Formulation Development for the Vitrification of Oak Ridge Tank Waste
Author:
Publisher:
Total Pages: 6
Release: 1998
Genre:
ISBN:


Download Glass Formulation Development for the Vitrification of Oak Ridge Tank Waste Book in PDF, Epub and Kindle

Radioactive waste from four different Oak Ridge tank farms will be immobilized. The sludges in these tanks contain transuranic radionuclides and RCRA metals at levels which will make the final waste from both TRU and mixed. The final waste form in the immobilization of these sludges may be glass because of its ability to accept a wide variety of components into its network structure. The results of these tests indicate that sufficient waste loadings can be obtained in the glass to significantly reduce the waste volume. This paper will present the results of the glass formulation efforts.

Handbook of Advanced Radioactive Waste Conditioning Technologies

Handbook of Advanced Radioactive Waste Conditioning Technologies
Author: Michael I. Ojovan
Publisher: Elsevier
Total Pages: 505
Release: 2011-01-24
Genre: Technology & Engineering
ISBN: 085709095X


Download Handbook of Advanced Radioactive Waste Conditioning Technologies Book in PDF, Epub and Kindle

Radioactive wastes are generated from a wide range of sources, including the power industry, and medical and scientific research institutions, presenting a range of challenges in dealing with a diverse set of radionuclides of varying concentrations. Conditioning technologies are essential for the encapsulation and immobilisation of these radioactive wastes, forming the initial engineered barrier required for their transportation, storage and disposal. The need to ensure the long term performance of radioactive waste forms is a key driver of the development of advanced conditioning technologies. The Handbook of advanced radioactive waste conditioning technologies provides a comprehensive and systematic reference on the various options available and under development for the treatment and immobilisation of radioactive wastes. The book opens with an introductory chapter on radioactive waste characterisation and selection of conditioning technologies. Part one reviews the main radioactive waste treatment processes and conditioning technologies, including volume reduction techniques such as compaction, incineration and plasma treatment, as well as encapsulation methods such as cementation, calcination and vitrification. This coverage is extended in part two, with in-depth reviews of the development of advanced materials for radioactive waste conditioning, including geopolymers, glass and ceramic matrices for nuclear waste immobilisation, and waste packages and containers for disposal. Finally, part three reviews the long-term performance assessment and knowledge management techniques applicable to both spent nuclear fuels and solid radioactive waste forms. With its distinguished international team of contributors, the Handbook of advanced radioactive waste conditioning technologies is a standard reference for all radioactive waste management professionals, radiochemists, academics and researchers involved in the development of the nuclear fuel cycle. Provides a comprehensive and systematic reference on the various options available and under development for the treatment and immobilisation of radioactive wastes Explores radioactive waste characterisation and selection of conditioning technologies including the development of advanced materials for radioactive waste conditioning Assesses the main radioactive waste treatment processes and conditioning technologies, including volume reduction techniques such as compaction

Design and Operation of High Level Waste Vitrification and Storage Facilities

Design and Operation of High Level Waste Vitrification and Storage Facilities
Author: International Atomic Energy Agency
Publisher:
Total Pages: 114
Release: 1992
Genre: Business & Economics
ISBN:


Download Design and Operation of High Level Waste Vitrification and Storage Facilities Book in PDF, Epub and Kindle

This report gives an up to date review of high level waste vitrification and storage facilities currently in an advanced stage of implementation.

Glass Formulation Development and Testing for the Vitrification of Oak Ridge Tank Waste

Glass Formulation Development and Testing for the Vitrification of Oak Ridge Tank Waste
Author:
Publisher:
Total Pages: 8
Release: 1997
Genre:
ISBN:


Download Glass Formulation Development and Testing for the Vitrification of Oak Ridge Tank Waste Book in PDF, Epub and Kindle

As part of joint project between the Oak Ridge National Laboratory (ORNL) and the Savannah River Technology Center (SRTC), radioactive waste from four different ORNL tank farms will be immobilized. This work, which is funded by the DOE Office of Science and Technology, is designed to create a direct comparison between grouting and vitrification technologies. SRTC efforts have been focused on developing and testing glass formulations for the vitrification of the tank wastes. The radioactive waste is from four different ORNL tank farms: Melton Valley Storage Tanks (MVST), Bethel Valley Evaporator Service Tanks (BVEST), Gunite and Associated Tanks (GAAT), and Old Hydrafracture Tanks (OHF). The sludges in these tanks contain transuranic radionuclides at levels which will make the final waste form (at reasonable waste loadings) TRU. Glass is an acceptable waste form because of its ability to accept a wide variety of components into its network structure. This is important since the waste varies significantly from tank to tank and from tank farm to tank farm. Therefore, glass formulation efforts have centered on developing a formulation that is robust enough to handle large fluctuations in waste composition. Crucible studies have been performed with simulated GAAT, MVST and BVEST sludges. The results of these tests indicate that high waste loadings can be obtained in the glass to significantly reduce the waste volume. This paper will present the results of the glass formulation efforts.

Cementitious Materials for Nuclear Waste Immobilization

Cementitious Materials for Nuclear Waste Immobilization
Author: Rehab O. Abdel Rahman
Publisher: John Wiley & Sons
Total Pages: 245
Release: 2014-11-17
Genre: Science
ISBN: 1118512006


Download Cementitious Materials for Nuclear Waste Immobilization Book in PDF, Epub and Kindle

Cementitious materials are an essential part in any radioactive waste disposal facility. Conditioning processes such as cementation are used to convert waste into a stable solid form that is insoluble and will prevent dispersion to the surrounding environment. It is incredibly important to understand the long-term behavior of these materials. This book summarises approaches and current practices in use of cementitious materials for nuclear waste immobilisation. It gives a unique description of the most important aspects of cements as nuclear waste forms: starting with a description of wastes, analyzing the cementitious systems used for immobilization and describing the technologies used, and ending with analysis of cementitious waste forms and their long term behavior in an envisaged disposal environment. Extensive research has been devoted to study the feasibility of using cement or cement based materials in immobilizing and solidifying different radioactive wastes. However, these research results are scattered. This work provides the reader with both the science and technology of the immobilization process, and the cementitious materials used to immobilize nuclear waste. It summarizes current knowledge in the field, and highlights important areas that need more investigation. The chapters include: Introduction, Portland cement, Alternative cements, Cement characterization and testing, Radioactive waste cementation, Waste cementation technology, Cementitious wasteform durability and performance assessment.