Demonstration of the Hollow Channel Plasma Wakefield Accelerator

Demonstration of the Hollow Channel Plasma Wakefield Accelerator
Author:
Publisher:
Total Pages: 192
Release: 2016
Genre:
ISBN:


Download Demonstration of the Hollow Channel Plasma Wakefield Accelerator Book in PDF, Epub and Kindle

A plasma wakefield accelerator is a device that converts the energy of a relativistic particle beam into a large-amplitude wave in a plasma. The plasma wave, or wakefield, supports an enormous electricfield that is used to accelerate a trailing particle beam. The plasma wakefield accelerator can therefore be used as a transformer, transferring energy from a high-charge, low-energy particle beam into a high-energy, low-charge particle beam. This technique may lead to a new generation of ultra-compact, high-energy particle accelerators. The past decade has seen enormous progress in the field of plasma wakefield acceleration with experimental demonstrations of the acceleration of electron beams by several gigaelectron-volts. The acceleration of positron beams in plasma is more challenging, but also necessary for the creation of a high-energy electron-positron collider. Part of the challenge is that the plasma responds asymmetrically to electrons and positrons, leading to increased disruption of the positron beam. One solution to this problem, first proposed over twenty years ago, is to use a hollow channel plasma which symmetrizes the response of the plasma to beams of positive and negative charge, making it possible to accelerate positrons in plasma without disruption. In this thesis, we describe the theory relevant to our experiment and derive new results when needed. We discuss the development and implementation of special optical devices used to create long plasma channels. We demonstrate for the first time the generation of meter-scale plasma channels and the acceleration of positron beams therein.

Demonstration of a Positron Beam-driven Hollow Channel Plasma Wakefield Accelerator

Demonstration of a Positron Beam-driven Hollow Channel Plasma Wakefield Accelerator
Author:
Publisher:
Total Pages:
Release: 2016
Genre:
ISBN:


Download Demonstration of a Positron Beam-driven Hollow Channel Plasma Wakefield Accelerator Book in PDF, Epub and Kindle

Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. In this study, we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

Studies of Proton Driven Plasma Wakefield Acceleration

Studies of Proton Driven Plasma Wakefield Acceleration
Author: Yangmei Li
Publisher: Springer Nature
Total Pages: 140
Release: 2020-07-15
Genre: Science
ISBN: 3030501167


Download Studies of Proton Driven Plasma Wakefield Acceleration Book in PDF, Epub and Kindle

This thesis focuses on a cutting-edge area of research, which is aligned with CERN's mainstream research, the "AWAKE" project, dedicated to proving the capability of accelerating particles to the energy frontier by the high energy proton beam. The author participated in this project and has advanced the plasma wakefield theory and modelling significantly, especially concerning future plasma acceleration based collider design. The thesis addresses electron beam acceleration to high energy whilst preserving its high quality driven by a single short proton bunch in hollow plasma. It also demonstrates stable deceleration of multiple proton bunches in a nonlinear regime with strong resonant wakefield excitation in hollow plasma, and generation of high energy and high quality electron or positron bunches. Further work includes the assessment of transverse instabilities induced by misaligned beams in hollow plasma and enhancement of the wakefield amplitude driven by a self-modulated long proton bunch with a tapered plasma. This work has major potential to impact the next generation of linear colliders and also in the long-term may help develop compact accelerators for use in industrial and medical facilities.

Multimode Analysis of the Hollow Plasma Channel Wakefield Accelerator

Multimode Analysis of the Hollow Plasma Channel Wakefield Accelerator
Author:
Publisher:
Total Pages: 5
Release: 1999
Genre:
ISBN:


Download Multimode Analysis of the Hollow Plasma Channel Wakefield Accelerator Book in PDF, Epub and Kindle

The hollow plasma channel is analyzed as an accelerating structure. The excitation of the channel by an ultra-relativistic beam is analyzed. Coupling to the fundamental and all higher order azimuthal modes of the excited electromagnetic fields is derived. Implications of this work for plasma-based accelerators, including beam loading and beam breakup, are discussed. Small initial transverse displacements of the beam are shown to couple to deflecting modes in the channel. The asymptotic growth rate of the resultant beam breakup instability is analyzed and a method for reducing the growth is proposed.

Investigation of a Gas Jet-Produced Hollow Plasma Wakefield Accelerator

Investigation of a Gas Jet-Produced Hollow Plasma Wakefield Accelerator
Author:
Publisher:
Total Pages: 3
Release: 2009
Genre:
ISBN:


Download Investigation of a Gas Jet-Produced Hollow Plasma Wakefield Accelerator Book in PDF, Epub and Kindle

The effect of ion motion and the need for practical positron propagation in a plasma wakefield accelerator (PWFA) have incited interest in hollow plasma channels. These channels are typically assumed to be cylindrically symmetric; however, a different geometry might be easier to achieve. The introduction of an obstruction into the outlet of a high Mach number gas jet can produce two parallel slabs of gas separated by a density depression. Here, there is a detailed simulation study of the density depression created in such a system. This investigation reveals that the density depression is insufficient at the desired plasma density. However, insights from the simulations suggest another avenue for the creation of the hollow slab geometry.

Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator
Author:
Publisher:
Total Pages:
Release: 2009
Genre:
ISBN:


Download Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator Book in PDF, Epub and Kindle

Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, [epsilon]{sub N, x}/I{sub t}, below the level of 0.2 [mu]m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of [epsilon]{sub N, x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few [mu]m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped electron bunches. Chapters four and five present the experimental diagnostics and measurements for the trapped electrons. Next, the sixth chapter introduces suggestions for future trapped electron experiments. Then, Chapter seven contains the conclusions. In addition, there is an appendix chapter that covers a topic which is extraneous to electron trapping, but relevant to the PWFA. This chapter explores the feasibility of one idea for the production of a hollow channel plasma, which if produced could solve some of the remaining issues for a plasma-based collider.

Beam-driven Acceleration in Ultra-dense Plasma Media

Beam-driven Acceleration in Ultra-dense Plasma Media
Author:
Publisher:
Total Pages: 17
Release: 2014
Genre:
ISBN:


Download Beam-driven Acceleration in Ultra-dense Plasma Media Book in PDF, Epub and Kindle

Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.

Control of Focusing Forces and Emittances in Plasma-based Accelerators Using Near-hollow Plasma Channels

Control of Focusing Forces and Emittances in Plasma-based Accelerators Using Near-hollow Plasma Channels
Author:
Publisher:
Total Pages:
Release: 2013
Genre:
ISBN:


Download Control of Focusing Forces and Emittances in Plasma-based Accelerators Using Near-hollow Plasma Channels Book in PDF, Epub and Kindle

A near-hollow plasma channel, where the plasma density in the channel is much less than the plasma density in the walls, is proposed to provide independent control over the focusing and accelerating forces in a plasma accelerator. In this geometry the low density in the channel contributes to the focusing forces, while the accelerating fields are determined by the high density in the channel walls. The channel also provides guiding for intense laser pulses used for wakefield excitation. Both electron and positron beams can be accelerated in a nearly symmetric fashion. Near-hollow plasma channels can effectively mitigate emittance growth due to Coulomb scattering for high energy physics applications.