Controlled Growth Of Nanomaterials

Controlled Growth Of Nanomaterials
Author: Lide Zhang
Publisher: World Scientific
Total Pages: 479
Release: 2007-11-12
Genre: Technology & Engineering
ISBN: 9814478334


Download Controlled Growth Of Nanomaterials Book in PDF, Epub and Kindle

This book introduces the latest methods for the controlled growth of nanomaterial systems. The coverage includes simple and complex nanomaterial systems, ordered nanostructures and complex nanostructure arrays, and the essential conditions for the controlled growth of nanostructures with different morphologies, sizes, compositions, and microstructures. The book also discusses the dynamics of controlled growth and thermodynamic characteristics of two-dimensional nanorestricted systems. The authors introduce various novel synthesis methods for nanomaterials and nanostructures, such as hierarchical growth, heterostructures growth, doping growth and some developing template synthesis methods. In addition to discussing applications, the book reviews developing trends in nanomaterials and nanostructures.

Nanoparticle Technology Handbook

Nanoparticle Technology Handbook
Author: Masuo Hosokawa
Publisher: Elsevier
Total Pages: 645
Release: 2007-10-19
Genre: Technology & Engineering
ISBN: 008055802X


Download Nanoparticle Technology Handbook Book in PDF, Epub and Kindle

Nanoparticle technology, which handles the preparation, processing, application and characterisation of nanoparticles, is a new and revolutionary technology. It becomes the core of nanotechnology as an extension of the conventional Fine Particle / Powder Technology. Nanoparticle technology plays an important role in the implementation of nanotechnology in many engineering and industrial fields including electronic devices, advanced ceramics, new batteries, engineered catalysts, functional paint and ink, Drug Delivery System, biotechnology, etc.; and makes use of the unique properties of the nanoparticles which are completely different from those of the bulk materials. This new handbook is the first to explain complete aspects of nanoparticles with many application examples showing their advantages and advanced development. There are handbooks which briefly mention the nanosized particles or their related applications, but no handbook describing the complete aspects of nanoparticles has been published so far. The handbook elucidates of the basic properties of nanoparticles and various nanostructural materials with their characterisation methods in the first part. It also introduces more than 40 examples of practical and potential uses of nanoparticles in the later part dealing with applications. It is intended to give readers a clear picture of nanoparticles as well as new ideas or hints on their applications to create new materials or to improve the performance of the advanced functional materials developed with the nanoparticles. * Introduces all aspects of nanoparticle technology, from the fundamentals to applications. * Includes basic information on the preparation through to the characterization of nanoparticles from various viewpoints * Includes information on nanostructures, which play an important role in practical applications.

Controlled Synthesis of Nanoparticles in Microheterogeneous Systems

Controlled Synthesis of Nanoparticles in Microheterogeneous Systems
Author: Vincenzo Turco Liveri
Publisher: Springer Science & Business Media
Total Pages: 202
Release: 2006-01-04
Genre: Science
ISBN: 9780387264271


Download Controlled Synthesis of Nanoparticles in Microheterogeneous Systems Book in PDF, Epub and Kindle

The first step in developing nanoscience and nanotechnology is the production of nanoparticles. Controlled Synthesis of Nanoparticles in Microheterogeneous Systems contains descriptions of one of the most powerful bottom-up methods of synthesizing size controlled and stable nanoparticles. This method is based on the use of surfactant-containing microheterogeneous systems: liquid crystals, monolayers and multilayers, solutions of direct and reversed micelles, direct and reversed vesicles, and water-in-oil and oil-in-water microemulsions. The author is prominent in the field of physico-chemical characterization of microheterogeneous systems and their use as ideal solvent and reaction media for the production and long-term storage of nanomaterials. This is the first book that attempts to unify the knowledge necessary for judicious manipulation of surfactant-based systems and a fine tuning of geometric and physico-chemical properties of nanoparticles of a wide variety of substances. Prof. Turco Liveri has chosen to write an easy-to-read book aiming to be evocative rather than exhaustive. Because of the intense interest in nanoscience and nanomaterials, this book is an important fundamental work that fits ideally into the series Nanostructure Science and Technology and will be useful for a wide range of students and young researchers involved in the study and manipulation of matter at the atomic level.

Nanomaterials Chemistry

Nanomaterials Chemistry
Author: C. N. R. Rao
Publisher: John Wiley & Sons
Total Pages: 420
Release: 2007-09-24
Genre: Science
ISBN: 3527611371


Download Nanomaterials Chemistry Book in PDF, Epub and Kindle

With this handbook, the distinguished team of editors has combined the expertise of leading nanomaterials scientists to provide the latest overview of this field. They cover the whole spectrum of nanomaterials, ranging from theory, synthesis, properties, characterization to application, including such new developments as quantum dots, nanoparticles, nanoporous materials, nanowires, nanotubes, and nanostructured polymers. The result is recommended reading for everybody working in nanoscience: Newcomers to the field can acquaint themselves with this exciting subject, while specialists will find answers to all their questions as well as helpful suggestions for further research.

Smart Nanomaterials in Biomedical Applications

Smart Nanomaterials in Biomedical Applications
Author: Jin-Chul Kim
Publisher: Springer Nature
Total Pages: 603
Release: 2022-01-19
Genre: Medical
ISBN: 3030842622


Download Smart Nanomaterials in Biomedical Applications Book in PDF, Epub and Kindle

With the start of 2020, the wrath of pandemic challenged the scientific community to develop more advanced drug delivery approaches for biomedical applications, endowing conventional drugs with additional therapeutic benefits and minimum side effects. Although significant advancements have been done in the field of drug delivery, there is a need to focus towards strategizing novel and improved drug delivery systems that should be convenient and cost-effective to the patients, and simultaneously they should also provide financial benefits to pharmaceutical companies. Controlled drug delivery technology offers ample opportunities and scope for improvising the therapeutic efficacy of drugs via optimizing the drug release rate and time. For this endeavour, smart nanomaterials have served as remarkable candidates for biomedical applications, owing to their ground-breaking properties and design. The development of such nanomaterials requires a broad knowledge related to their physio-chemical properties, molecular structure, mechanisms by which the nanomaterials interact with the cells, and methods by which drugs are released at the site of action. This knowledge must also be allied with the knowledge of signaling crosstalk mechanisms that are modulated by the nanomaterial-drugs composite. It can be anticipated that these emerging drug delivery technologies can facilitate the world to successfully encounter such pandemic outbursts in the future in a cost-effective and time-effective manner. The chapters in this book deal with the advanced technologies and approaches that can benefit advanced students, researchers, and industry experts in developing smart and intelligent nanomaterials for future biomedical applications, and development, manufacturing, and commercialization for controlled and targeted drug delivery.

Controlling the growth of nanoparticles produced in a high power pulsed plasma

Controlling the growth of nanoparticles produced in a high power pulsed plasma
Author: Rickard Gunnarsson
Publisher: Linköping University Electronic Press
Total Pages: 69
Release: 2017-12-21
Genre:
ISBN: 9176854663


Download Controlling the growth of nanoparticles produced in a high power pulsed plasma Book in PDF, Epub and Kindle

Nanotechnology can profoundly benefit our health, environment and everyday life. In order to make this a reality, both technological and theoretical advancements of the nanomaterial synthesis methods are needed. A nanoparticle is one of the fundamental building blocks in nanotechnology and this thesis describes the control of the nucleation, growth and oxidation of titanium particles produced in a pulsed plasma. It will be shown that by controlling the process conditions both the composition (oxidationstate) and size of the particles can be varied. The experimental results are supported by theoretical modeling. If processing conditions are chosen which give a high temperature in the nanoparticle growth environment, oxygen was found to be necessary in order to nucleate the nanoparticles. The two reasons for this are 1: the lower vapor pressure of a titanium oxide cluster compared to a titanium cluster, meaning a lower probability of evaporation, and 2: the ability of a cluster to cool down by ejecting an oxygen atom when an oxygen molecule condenses on its surface. When the oxygen gas flow was slightly increased, the nanoparticle yield and oxidation state increased. A further increase caused a decrease in particle yield which is attributed to a slight oxidation ofthe cathode. By varying the oxygen flow, it was possible to control the oxidation state of the nanoparticles without fully oxidizing the cathode. Pure titanium nanoparticles could not be produced in a high vacuum system because oxygen containing gases such as residual water vapour have a profound influence on nanoparticle yield and composition. In an ultrahigh vacuum system titanium nanoparticles without significantoxygen contamination were produced by reducing the temperature of the growth environment and increasing the pressure of an argon-helium gas mixture within whichthe nanoparticles grew. The dimer formation rate necessary for this is only achievable at higher pressures. After a dimer has formed, it needs to grow by colliding with a titanium atom followed by cooling by collisions with multiple buffer gas atoms. The condensation event heats up the cluster to a temperature much higher than the gas temperature, where it is during a short time susceptible to evaporation. When the clusters’ internal energy has decreased by collisions with the gas to less than the energy required to evaporate a titanium atom, it is temporarily stable until the next condensation event occurs. The temperature difference by which the cluster has to cool down before it is temporarily stable is exactly as many kelvins as the gas temperature.The addition of helium was found to decrease the temperature of the gas, making it possible for nanoparticles of pure titanium to grow. The process window where this is possible was determined and the results presented opens up new possibilities to synthesize particles with a controlled contamination level and deposition rate.The size of the nanoparticles has been controlled by three means. The first is to change the electrical potential around the growth zone, which allows for size (diameter) control in the order of 25 to 75 nm without influencing the oxygen content of the particles. The second means is by increasing the pressure which decreases the ambipolar diffusion rate of the ions resulting in a higher growth material density. By doing this, the particle size can be increased from 50 to 250 nm, however the oxygen content also increases with increasing pressure when this is done in a high vacuum system. The last means of size control was by adding a helium flow to the process where higher flows resulted in smaller nanoparticle sizes. When changing the pressure in high vacuum, the morphology of the nanoparticles could be controlled. At low pressures, highly faceted near spherical particles were produced. Increasing the pressure caused the formation of cubic particles which appear to ‘fracture’ at higher pressures. At the highest pressure investigated, the particles became poly-crystalline with a cauliflower shape and this morphology was attributed to a lowad atom mobility. The ability to control the size, morphology and composition of the nanoparticles determines the success of applying the process to manufacture devices. In related work presented in this thesis it is shown that 150-200 nm molybdenum particles with cauliflower morphology were found to scatter light in which made them useful in photovoltaic applications, and the size of titanium dioxide nanoparticles were found to influence the selectivity of graphene based gas sensors.

Crystallization and Growth of Colloidal Nanocrystals

Crystallization and Growth of Colloidal Nanocrystals
Author: Edson Roberto Leite
Publisher: Springer Science & Business Media
Total Pages: 101
Release: 2011-11-17
Genre: Science
ISBN: 1461413087


Download Crystallization and Growth of Colloidal Nanocrystals Book in PDF, Epub and Kindle

Since the size, shape, and microstructure of nanocrystalline materials strongly impact physical and chemical properties, the development of new synthetic routes to nanocrystals with controlled composition and morphology is a key objective of the nanomaterials community. This objective is dependent on control of the nucleation and growth mechanisms that occur during the synthetic process, which in turn requires a fundamental understanding of both classical nucleation and growth and non-classical growth processes in nanostructured materials. Recently, a novel growth process called Oriented Attachment (OA) was identified which appears to be a fundamental mechanism during the development of nanoscale materials. OA is a special case of aggregation that provides an important route by which nanocrystals grow, defects are formed, and unique—often symmetry-defying—crystal morphologies can be produced. This growth mechanism involves reversible self-assembly of primary nanocrystals followed by reorientation of the assembled nanoparticles to achieve structural accord at the particle-particle interface, the removal of adsorbates and solvent molecules, and, finally, the irreversible formation of chemical bonds to produce new single crystals, twins, and intergrowths. Crystallization and Growth of Colloidal Nanocrystals provides a current understanding of the mechanisms related to nucleation and growth for use in controlling nanocrystal morphology and physical-chemical properties, and is essential reading for any chemist or materials scientist with an interest in using nanocrystals as building blocks for larger structures. This book provides a compendium for the expert reader as well as an excellent introduction for advanced undergraduate and graduate students seeking a gateway into this dynamic area of research.

Modern Aspects of Emulsion Science

Modern Aspects of Emulsion Science
Author: Bernard P Binks
Publisher: Royal Society of Chemistry
Total Pages: 443
Release: 2007-10-31
Genre: Technology & Engineering
ISBN: 1847551475


Download Modern Aspects of Emulsion Science Book in PDF, Epub and Kindle

Emulsions occur either as end products or during the processing of products in a huge range of areas including the food, agrochemical, pharmaceutical, paint and oil industries. Despite over one hundred years of research in the subject, however, a quantitative understanding of emulsions has been lacking. Modern Aspects of Emulsion Science presents a comprehensive description of both the scientific principles in the field and the very latest advances in research in this important area of surface and colloid science. Topics covered include emulsion formation, type, stability (creaming, flocculation, ripening, coalescence), monodisperse and gel emulsions, and applications. Emphasis has been placed on relating the chemistry of the surfactant or protein adsorbed at the oil-water interface to the principles of the physics involved in the bulk emulsion property. The book has been written by a collection of the world's leading experts in the field, and covers both experimental and theoretical approaches. Modern Aspects of Emulsion Science fills a real gap in the market, being the only book of its kind in print. As such it will prove essential reading for graduates and researchers in this subject, in both academia and industry.

Nanoscale Fabrication, Optimization, Scale-up and Biological Aspects of Pharmaceutical Nanotechnology

Nanoscale Fabrication, Optimization, Scale-up and Biological Aspects of Pharmaceutical Nanotechnology
Author: Alexandru Mihai Grumezescu
Publisher: William Andrew
Total Pages: 704
Release: 2017-12-11
Genre: Science
ISBN: 0128136308


Download Nanoscale Fabrication, Optimization, Scale-up and Biological Aspects of Pharmaceutical Nanotechnology Book in PDF, Epub and Kindle

Nanoscale Fabrication, Optimization, Scale-up and Biological Aspects of Pharmaceutical Nanotechnology focuses on the fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology. In particular, the following aspects of nanoparticle preparation methods are discussed: the need for less toxic reagents, simplification of the procedure to allow economic scale-up, and optimization to improve yield and entrapment efficiency. Written by a diverse range of international researchers, the chapters examine characterization and manufacturing of nanomaterials for pharmaceutical applications. Regulatory and policy aspects are also discussed. This book is a valuable reference resource for researchers in both academia and the pharmaceutical industry who want to learn more about how nanomaterials can best be utilized. Shows how nanomanufacturing techniques can help to create more effective, cheaper pharmaceutical products Explores how nanofabrication techniques developed in the lab have been translated to commercial applications in recent years Explains safety and regulatory aspects of the use of nanomanufacturing processes in the pharmaceutical industry

Controlling the Growth of Nanoparticles Produced in a Highpower Pulsed Plasma

Controlling the Growth of Nanoparticles Produced in a Highpower Pulsed Plasma
Author: Rickard Gunnarsson
Publisher:
Total Pages:
Release: 2017
Genre:
ISBN:


Download Controlling the Growth of Nanoparticles Produced in a Highpower Pulsed Plasma Book in PDF, Epub and Kindle

Nanotechnology can profoundly benefit our health, environment and everyday life. In order to make this a reality, both technological and theoretical advancements of the nanomaterial synthesis methods are needed. A nanoparticle is one of the fundamental building blocks in nanotechnology and this thesis describes the control of the nucleation, growth and oxidation of titanium particles produced in a pulsed plasma. It will be shown that by controlling the process conditions both the composition (oxidationstate) and size of the particles can be varied. The experimental results are supported by theoretical modeling. If processing conditions are chosen which give a high temperature in the nanoparticle growth environment, oxygen was found to be necessary in order to nucleate the nanoparticles. The two reasons for this are 1: the lower vapor pressure of a titanium oxide cluster compared to a titanium cluster, meaning a lower probability of evaporation, and 2: the ability of a cluster to cool down by ejecting an oxygen atom when an oxygen molecule condenses on its surface. When the oxygen gas flow was slightly increased, the nanoparticle yield and oxidation state increased. A further increase caused a decrease in particle yield which is attributed to a slight oxidation ofthe cathode. By varying the oxygen flow, it was possible to control the oxidation state of the nanoparticles without fully oxidizing the cathode. Pure titanium nanoparticles could not be produced in a high vacuum system because oxygen containing gases such as residual water vapour have a profound influence on nanoparticle yield and composition. In an ultrahigh vacuum system titanium nanoparticles without significantoxygen contamination were produced by reducing the temperature of the growth environment and increasing the pressure of an argon-helium gas mixture within whichthe nanoparticles grew. The dimer formation rate necessary for this is only achievable at higher pressures. After a dimer has formed, it needs to grow by colliding with a titanium atom followed by cooling by collisions with multiple buffer gas atoms. The condensation event heats up the cluster to a temperature much higher than the gas temperature, where it is during a short time susceptible to evaporation. When the clusters’ internal energy has decreased by collisions with the gas to less than the energy required to evaporate a titanium atom, it is temporarily stable until the next condensation event occurs. The temperature difference by which the cluster has to cool down before it is temporarily stable is exactly as many kelvins as the gas temperature.The addition of helium was found to decrease the temperature of the gas, making it possible for nanoparticles of pure titanium to grow. The process window where this is possible was determined and the results presented opens up new possibilities to synthesize particles with a controlled contamination level and deposition rate.The size of the nanoparticles has been controlled by three means. The first is to change the electrical potential around the growth zone, which allows for size (diameter) control in the order of 25 to 75 nm without influencing the oxygen content of the particles. The second means is by increasing the pressure which decreases the ambipolar diffusion rate of the ions resulting in a higher growth material density. By doing this, the particle size can be increased from 50 to 250 nm, however the oxygen content also increases with increasing pressure when this is done in a high vacuum system. The last means of size control was by adding a helium flow to the process where higher flows resulted in smaller nanoparticle sizes. When changing the pressure in high vacuum, the morphology of the nanoparticles could be controlled. At low pressures, highly faceted near spherical particles were produced. Increasing the pressure caused the formation of cubic particles which appear to ‘fracture’ at higher pressures. At the highest pressure investigated, the particles became poly-crystalline with a cauliflower shape and this morphology was attributed to a lowad atom mobility. The ability to control the size, morphology and composition of the nanoparticles determines the success of applying the process to manufacture devices. In related work presented in this thesis it is shown that 150-200 nm molybdenum particles with cauliflower morphology were found to scatter light in which made them useful in photovoltaic applications, and the size of titanium dioxide nanoparticles were found to influence the selectivity of graphene based gas sensors.