Computing Nature

Computing Nature
Author: Gordana Dodig-Crnkovic
Publisher: Springer Science & Business Media
Total Pages: 268
Release: 2013-03-21
Genre: Technology & Engineering
ISBN: 3642372252


Download Computing Nature Book in PDF, Epub and Kindle

This book is about nature considered as the totality of physical existence, the universe, and our present day attempts to understand it. If we see the universe as a network of networks of computational processes at many different levels of organization, what can we learn about physics, biology, cognition, social systems, and ecology expressed through interacting networks of elementary particles, atoms, molecules, cells, (and especially neurons when it comes to understanding of cognition and intelligence), organs, organisms and their ecologies? Regarding our computational models of natural phenomena Feynman famously wondered: “Why should it take an infinite amount of logic to figure out what one tiny piece of space/time is going to do?” Phenomena themselves occur so quickly and automatically in nature. Can we learn how to harness nature’s computational power as we harness its energy and materials? This volume includes a selection of contributions from the Symposium on Natural Computing/Unconventional Computing and Its Philosophical Significance, organized during the AISB/IACAP World Congress 2012, held in Birmingham, UK, on July 2-6, on the occasion of the centenary of Alan Turing’s birth. In this book, leading researchers investigated questions of computing nature by exploring various facets of computation as we find it in nature: relationships between different levels of computation, cognition with learning and intelligence, mathematical background, relationships to classical Turing computation and Turing’s ideas about computing nature - unorganized machines and morphogenesis. It addresses questions of information, representation and computation, interaction as communication, concurrency and agent models; in short this book presents natural computing and unconventional computing as extension of the idea of computation as symbol manipulation.

Handbook of Natural Computing

Handbook of Natural Computing
Author: Grzegorz Rozenberg
Publisher: Springer
Total Pages: 2052
Release: 2012-07-09
Genre: Computers
ISBN: 9783540929093


Download Handbook of Natural Computing Book in PDF, Epub and Kindle

Natural Computing is the field of research that investigates both human-designed computing inspired by nature and computing taking place in nature, i.e., it investigates models and computational techniques inspired by nature and also it investigates phenomena taking place in nature in terms of information processing. Examples of the first strand of research covered by the handbook include neural computation inspired by the functioning of the brain; evolutionary computation inspired by Darwinian evolution of species; cellular automata inspired by intercellular communication; swarm intelligence inspired by the behavior of groups of organisms; artificial immune systems inspired by the natural immune system; artificial life systems inspired by the properties of natural life in general; membrane computing inspired by the compartmentalized ways in which cells process information; and amorphous computing inspired by morphogenesis. Other examples of natural-computing paradigms are molecular computing and quantum computing, where the goal is to replace traditional electronic hardware, e.g., by bioware in molecular computing. In molecular computing, data are encoded as biomolecules and then molecular biology tools are used to transform the data, thus performing computations. In quantum computing, one exploits quantum-mechanical phenomena to perform computations and secure communications more efficiently than classical physics and, hence, traditional hardware allows. The second strand of research covered by the handbook, computation taking place in nature, is represented by investigations into, among others, the computational nature of self-assembly, which lies at the core of nanoscience, the computational nature of developmental processes, the computational nature of biochemical reactions, the computational nature of bacterial communication, the computational nature of brain processes, and the systems biology approach to bionetworks where cellular processes are treated in terms of communication and interaction, and, hence, in terms of computation. We are now witnessing exciting interaction between computer science and the natural sciences. While the natural sciences are rapidly absorbing notions, techniques and methodologies intrinsic to information processing, computer science is adapting and extending its traditional notion of computation, and computational techniques, to account for computation taking place in nature around us. Natural Computing is an important catalyst for this two-way interaction, and this handbook is a major record of this important development.

Nature-Inspired Computation and Swarm Intelligence

Nature-Inspired Computation and Swarm Intelligence
Author: Xin-She Yang
Publisher: Academic Press
Total Pages: 442
Release: 2020-04-24
Genre: Computers
ISBN: 0128197145


Download Nature-Inspired Computation and Swarm Intelligence Book in PDF, Epub and Kindle

Nature-inspired computation and swarm intelligence have become popular and effective tools for solving problems in optimization, computational intelligence, soft computing and data science. Recently, the literature in the field has expanded rapidly, with new algorithms and applications emerging. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is a timely reference giving a comprehensive review of relevant state-of-the-art developments in algorithms, theory and applications of nature-inspired algorithms and swarm intelligence. It reviews and documents the new developments, focusing on nature-inspired algorithms and their theoretical analysis, as well as providing a guide to their implementation. The book includes case studies of diverse real-world applications, balancing explanation of the theory with practical implementation. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is suitable for researchers and graduate students in computer science, engineering, data science, and management science, who want a comprehensive review of algorithms, theory and implementation within the fields of nature inspired computation and swarm intelligence. Introduces nature-inspired algorithms and their fundamentals, including: particle swarm optimization, bat algorithm, cuckoo search, firefly algorithm, flower pollination algorithm, differential evolution and genetic algorithms as well as multi-objective optimization algorithms and others Provides a theoretical foundation and analyses of algorithms, including: statistical theory and Markov chain theory on the convergence and stability of algorithms, dynamical system theory, benchmarking of optimization, no-free-lunch theorems, and a generalized mathematical framework Includes a diversity of case studies of real-world applications: feature selection, clustering and classification, tuning of restricted Boltzmann machines, travelling salesman problem, classification of white blood cells, music generation by artificial intelligence, swarm robots, neural networks, engineering designs and others

Quantum Computing for Everyone

Quantum Computing for Everyone
Author: Chris Bernhardt
Publisher: MIT Press
Total Pages: 214
Release: 2019-03-19
Genre: Computers
ISBN: 0262350947


Download Quantum Computing for Everyone Book in PDF, Epub and Kindle

An accessible introduction to an exciting new area in computation, explaining such topics as qubits, entanglement, and quantum teleportation for the general reader. Quantum computing is a beautiful fusion of quantum physics and computer science, incorporating some of the most stunning ideas from twentieth-century physics into an entirely new way of thinking about computation. In this book, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone who is comfortable with high school mathematics. He explains qubits, entanglement, quantum teleportation, quantum algorithms, and other quantum-related topics as clearly as possible for the general reader. Bernhardt, a mathematician himself, simplifies the mathematics as much as he can and provides elementary examples that illustrate both how the math works and what it means. Bernhardt introduces the basic unit of quantum computing, the qubit, and explains how the qubit can be measured; discusses entanglement—which, he says, is easier to describe mathematically than verbally—and what it means when two qubits are entangled (citing Einstein's characterization of what happens when the measurement of one entangled qubit affects the second as “spooky action at a distance”); and introduces quantum cryptography. He recaps standard topics in classical computing—bits, gates, and logic—and describes Edward Fredkin's ingenious billiard ball computer. He defines quantum gates, considers the speed of quantum algorithms, and describes the building of quantum computers. By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing. The basic unit of computation is the qubit, not the bit.

Nature-Inspired Computing and Optimization

Nature-Inspired Computing and Optimization
Author: Srikanta Patnaik
Publisher: Springer
Total Pages: 506
Release: 2017-03-07
Genre: Technology & Engineering
ISBN: 3319509209


Download Nature-Inspired Computing and Optimization Book in PDF, Epub and Kindle

The book provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application in optimization. The approach is mainly practice-oriented: each bio-inspired technique or algorithm is introduced together with one of its possible applications. Applications cover a wide range of real-world optimization problems: from feature selection and image enhancement to scheduling and dynamic resource management, from wireless sensor networks and wiring network diagnosis to sports training planning and gene expression, from topology control and morphological filters to nutritional meal design and antenna array design. There are a few theoretical chapters comparing different existing techniques, exploring the advantages of nature-inspired computing over other methods, and investigating the mixing time of genetic algorithms. The book also introduces a wide range of algorithms, including the ant colony optimization, the bat algorithm, genetic algorithms, the collision-based optimization algorithm, the flower pollination algorithm, multi-agent systems and particle swarm optimization. This timely book is intended as a practice-oriented reference guide for students, researchers and professionals.

Handbook of Nature-Inspired and Innovative Computing

Handbook of Nature-Inspired and Innovative Computing
Author: Albert Y. Zomaya
Publisher: Springer Science & Business Media
Total Pages: 758
Release: 2006-01-10
Genre: Computers
ISBN: 9780387405322


Download Handbook of Nature-Inspired and Innovative Computing Book in PDF, Epub and Kindle

As computing devices proliferate, demand increases for an understanding of emerging computing paradigms and models based on natural phenomena. Neural networks, evolution-based models, quantum computing, and DNA-based computing and simulations are all a necessary part of modern computing analysis and systems development. Vast literature exists on these new paradigms and their implications for a wide array of applications. This comprehensive handbook, the first of its kind to address the connection between nature-inspired and traditional computational paradigms, is a repository of case studies dealing with different problems in computing and solutions to these problems based on nature-inspired paradigms. The "Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies" is an essential compilation of models, methods, and algorithms for researchers, professionals, and advanced-level students working in all areas of computer science, IT, biocomputing, and network engineering.

Nature Inspired Computing for Data Science

Nature Inspired Computing for Data Science
Author: Minakhi Rout
Publisher: Springer Nature
Total Pages: 303
Release: 2019-11-26
Genre: Computers
ISBN: 3030338207


Download Nature Inspired Computing for Data Science Book in PDF, Epub and Kindle

This book discusses the current research and concepts in data science and how these can be addressed using different nature-inspired optimization techniques. Focusing on various data science problems, including classification, clustering, forecasting, and deep learning, it explores how researchers are using nature-inspired optimization techniques to find solutions to these problems in domains such as disease analysis and health care, object recognition, vehicular ad-hoc networking, high-dimensional data analysis, gene expression analysis, microgrids, and deep learning. As such it provides insights and inspiration for researchers to wanting to employ nature-inspired optimization techniques in their own endeavors.

Advances in Multi-Objective Nature Inspired Computing

Advances in Multi-Objective Nature Inspired Computing
Author: Carlos Coello Coello
Publisher: Springer Science & Business Media
Total Pages: 204
Release: 2010-02-04
Genre: Mathematics
ISBN: 364211217X


Download Advances in Multi-Objective Nature Inspired Computing Book in PDF, Epub and Kindle

The purpose of this book is to collect contributions that deal with the use of nature inspired metaheuristics for solving multi-objective combinatorial optimization problems. Such a collection intends to provide an overview of the state-of-the-art developments in this field, with the aim of motivating more researchers in operations research, engineering, and computer science, to do research in this area. As such, this book is expected to become a valuable reference for those wishing to do research on the use of nature inspired metaheuristics for solving multi-objective combinatorial optimization problems.

Nature-Inspired Intelligent Computing Techniques in Bioinformatics

Nature-Inspired Intelligent Computing Techniques in Bioinformatics
Author: Khalid Raza
Publisher: Springer Nature
Total Pages: 340
Release: 2022-10-31
Genre: Technology & Engineering
ISBN: 9811963797


Download Nature-Inspired Intelligent Computing Techniques in Bioinformatics Book in PDF, Epub and Kindle

This book encapsulates and occupies recent advances and state-of-the-art applications of nature-inspired computing (NIC) techniques in the field of bioinformatics and computational biology, which would aid medical sciences in various clinical applications. This edited volume covers fundamental applications, scope, and future perspectives of NIC techniques in bioinformatics including genomic profiling, gene expression data classification, DNA computation, systems and network biology, solving personalized therapy complications, antimicrobial resistance in bacterial pathogens, and computer-aided drug design, discovery, and therapeutics. It also covers the role of NIC techniques in various diseases and disorders, including cancer detection and diagnosis, breast cancer, lung disorder detection, disease biomarkers, and potential therapeutics identifications.

Applications of Nature-Inspired Computing in Renewable Energy Systems

Applications of Nature-Inspired Computing in Renewable Energy Systems
Author: Mellal, Mohamed Arezki
Publisher: IGI Global
Total Pages: 326
Release: 2021-12-17
Genre: Technology & Engineering
ISBN: 1799885631


Download Applications of Nature-Inspired Computing in Renewable Energy Systems Book in PDF, Epub and Kindle

Renewable energy is crucial to preserve the environment. This energy involves various systems that must be optimized and assessed to provide better performance; however, the design and development of renewable energy systems remains a challenge. It is crucial to implement the latest innovative research in the field in order to develop and improve renewable energy systems. Applications of Nature-Inspired Computing in Renewable Energy Systems discusses the latest research on nature-inspired computing approaches applied to the design and development of renewable energy systems and provides new solutions to the renewable energy domain. Covering topics such as microgrids, wind power, and artificial neural networks, it is ideal for engineers, industry professionals, researchers, academicians, practitioners, teachers, and students.