Combinatorics and Random Matrix Theory

Combinatorics and Random Matrix Theory
Author: Jinho Baik
Publisher: American Mathematical Soc.
Total Pages: 478
Release: 2016-06-22
Genre: Mathematics
ISBN: 0821848410


Download Combinatorics and Random Matrix Theory Book in PDF, Epub and Kindle

Over the last fifteen years a variety of problems in combinatorics have been solved in terms of random matrix theory. More precisely, the situation is as follows: the problems at hand are probabilistic in nature and, in an appropriate scaling limit, it turns out that certain key quantities associated with these problems behave statistically like the eigenvalues of a (large) random matrix. Said differently, random matrix theory provides a “stochastic special function theory” for a broad and growing class of problems in combinatorics. The goal of this book is to analyze in detail two key examples of this phenomenon, viz., Ulam's problem for increasing subsequences of random permutations and domino tilings of the Aztec diamond. Other examples are also described along the way, but in less detail. Techniques from many different areas in mathematics are needed to analyze these problems. These areas include combinatorics, probability theory, functional analysis, complex analysis, and the theory of integrable systems. The book is self-contained, and along the way we develop enough of the theory we need from each area that a general reader with, say, two or three years experience in graduate school can learn the subject directly from the text.

Random Matrices

Random Matrices
Author: Alexei Borodin
Publisher: American Mathematical Soc.
Total Pages: 498
Release: 2019-10-30
Genre: Education
ISBN: 1470452804


Download Random Matrices Book in PDF, Epub and Kindle

Random matrix theory has many roots and many branches in mathematics, statistics, physics, computer science, data science, numerical analysis, biology, ecology, engineering, and operations research. This book provides a snippet of this vast domain of study, with a particular focus on the notations of universality and integrability. Universality shows that many systems behave the same way in their large scale limit, while integrability provides a route to describe the nature of those universal limits. Many of the ten contributed chapters address these themes, while others touch on applications of tools and results from random matrix theory. This book is appropriate for graduate students and researchers interested in learning techniques and results in random matrix theory from different perspectives and viewpoints. It also captures a moment in the evolution of the theory, when the previous decade brought major break-throughs, prompting exciting new directions of research.

An Introduction to Random Matrices

An Introduction to Random Matrices
Author: Greg W. Anderson
Publisher: Cambridge University Press
Total Pages: 507
Release: 2010
Genre: Mathematics
ISBN: 0521194520


Download An Introduction to Random Matrices Book in PDF, Epub and Kindle

A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.

Random Matrix Models and Their Applications

Random Matrix Models and Their Applications
Author: Pavel Bleher
Publisher: Cambridge University Press
Total Pages: 454
Release: 2001-06-04
Genre: Mathematics
ISBN: 9780521802093


Download Random Matrix Models and Their Applications Book in PDF, Epub and Kindle

Expository articles on random matrix theory emphasizing the exchange of ideas between the physical and mathematical communities.

Large Random Matrices: Lectures on Macroscopic Asymptotics

Large Random Matrices: Lectures on Macroscopic Asymptotics
Author: Alice Guionnet
Publisher: Springer
Total Pages: 296
Release: 2009-04-20
Genre: Mathematics
ISBN: 3540698973


Download Large Random Matrices: Lectures on Macroscopic Asymptotics Book in PDF, Epub and Kindle

Random matrix theory has developed in the last few years, in connection with various fields of mathematics and physics. These notes emphasize the relation with the problem of enumerating complicated graphs, and the related large deviations questions. Such questions are also closely related with the asymptotic distribution of matrices, which is naturally defined in the context of free probability and operator algebra. The material of this volume is based on a series of nine lectures given at the Saint-Flour Probability Summer School 2006. Lectures were also given by Maury Bramson and Steffen Lauritzen.

Free Probability and Random Matrices

Free Probability and Random Matrices
Author: James A. Mingo
Publisher: Springer
Total Pages: 343
Release: 2017-06-24
Genre: Mathematics
ISBN: 1493969420


Download Free Probability and Random Matrices Book in PDF, Epub and Kindle

This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.

Introduction to Random Matrices

Introduction to Random Matrices
Author: Giacomo Livan
Publisher: Springer
Total Pages: 122
Release: 2018-01-16
Genre: Science
ISBN: 3319708856


Download Introduction to Random Matrices Book in PDF, Epub and Kindle

Modern developments of Random Matrix Theory as well as pedagogical approaches to the standard core of the discipline are surprisingly hard to find in a well-organized, readable and user-friendly fashion. This slim and agile book, written in a pedagogical and hands-on style, without sacrificing formal rigor fills this gap. It brings Ph.D. students in Physics, as well as more senior practitioners, through the standard tools and results on random matrices, with an eye on most recent developments that are not usually covered in introductory texts. The focus is mainly on random matrices with real spectrum.The main guiding threads throughout the book are the Gaussian Ensembles. In particular, Wigner’s semicircle law is derived multiple times to illustrate several techniques (e.g., Coulomb gas approach, replica theory).Most chapters are accompanied by Matlab codes (stored in an online repository) to guide readers through the numerical check of most analytical results.

A Dynamical Approach to Random Matrix Theory

A Dynamical Approach to Random Matrix Theory
Author: László Erdős
Publisher: American Mathematical Soc.
Total Pages: 239
Release: 2017-08-30
Genre: Mathematics
ISBN: 1470436485


Download A Dynamical Approach to Random Matrix Theory Book in PDF, Epub and Kindle

A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.

Topics in Combinatorics and Random Matrix Theory

Topics in Combinatorics and Random Matrix Theory
Author:
Publisher:
Total Pages:
Release: 2009
Genre:
ISBN:


Download Topics in Combinatorics and Random Matrix Theory Book in PDF, Epub and Kindle

Motivated by the longest increasing subsequence problem, we examine sundry topics at the interface of enumerative/algebraic combinatorics and random matrix theory. We begin with an expository account of the increasing subsequence problem, contextualizing it as an ``exactly solvable'' Ramsey-type problem and introducing the RSK correspondence. New proofs and generalizations of some of the key results in increasing subsequence theory are given. These include Regev's single scaling limit, Gessel's Toeplitz determinant identity, and Rains' integral representation. The double scaling limit (Baik-Deift-Johansson theorem) is briefly described, although we have no new results in that direction. Following up on the appearance of determinantal generating functions in increasing subsequence type problems, we are led to a connection between combinatorics and the ensemble of truncated random unitary matrices, which we describe in terms of Fisher's random-turns vicious walker model from statistical mechanics. We prove that the moment generating function of the trace of a truncated random unitary matrix is the grand canonical partition function for Fisher's random-turns model with reunions. Finally, we consider unitary matrix integrals of a very general type, namely the ``correlation functions'' of entries of Haar-distributed random matrices. We show that these expand perturbatively as generating functions for class multiplicities in symmetric functions of Jucys-Murphy elements, thus addressing a problem originally raised by De Wit and t'Hooft and recently resurrected by Collins. We argue that this expansion is the CUE counterpart of genus expansion.

Random Matrices, Random Processes and Integrable Systems

Random Matrices, Random Processes and Integrable Systems
Author: John Harnad
Publisher: Springer Science & Business Media
Total Pages: 536
Release: 2011-05-06
Genre: Science
ISBN: 1441995145


Download Random Matrices, Random Processes and Integrable Systems Book in PDF, Epub and Kindle

This book explores the remarkable connections between two domains that, a priori, seem unrelated: Random matrices (together with associated random processes) and integrable systems. The relations between random matrix models and the theory of classical integrable systems have long been studied. These appear mainly in the deformation theory, when parameters characterizing the measures or the domain of localization of the eigenvalues are varied. The resulting differential equations determining the partition function and correlation functions are, remarkably, of the same type as certain equations appearing in the theory of integrable systems. They may be analyzed effectively through methods based upon the Riemann-Hilbert problem of analytic function theory and by related approaches to the study of nonlinear asymptotics in the large N limit. Associated with studies of matrix models are certain stochastic processes, the "Dyson processes", and their continuum diffusion limits, which govern the spectrum in random matrix ensembles, and may also be studied by related methods. Random Matrices, Random Processes and Integrable Systems provides an in-depth examination of random matrices with applications over a vast variety of domains, including multivariate statistics, random growth models, and many others. Leaders in the field apply the theory of integrable systems to the solution of fundamental problems in random systems and processes using an interdisciplinary approach that sheds new light on a dynamic topic of current research.