Bipedal Robotic Walking on Flat-Ground, Up-Slope and Rough Terrain with Human-Inspired Hybrid Zero Dynamics

Bipedal Robotic Walking on Flat-Ground, Up-Slope and Rough Terrain with Human-Inspired Hybrid Zero Dynamics
Author: Shishir Nadubettu Yadukumar
Publisher:
Total Pages:
Release: 2013
Genre:
ISBN:


Download Bipedal Robotic Walking on Flat-Ground, Up-Slope and Rough Terrain with Human-Inspired Hybrid Zero Dynamics Book in PDF, Epub and Kindle

The thesis shows how to achieve bipedal robotic walking on flat-ground, up-slope and rough terrain by using Human-Inspired control. We begin by considering human walking data and find outputs (or virtual constraints) that, when calculated from the human data, are described by simple functions of time (termed canonical walking functions). Formally, we construct a torque controller, through model inversion, that drives the outputs of the robot to the outputs of the human as represented by the canonical walking function; while these functions fit the human data well, they do not apriori guarantee robotic walking (due to do the physical differences between humans and robots). An optimization problem is presented that determines the best fit of the canonical walking function to the human data, while guaranteeing walking for a specific bipedal robot; in addition, constraints can be added that guarantee physically realizable walking. We consider a physical bipedal robot, AMBER, and considering the special property of the motors used in the robot, i.e., low leakage inductance, we approximate the motor model and use the formal controllers that satisfy the constraints and translate into an efficient voltage-based controller that can be directly implemented on AMBER. The end result is walking on flat-ground and up-slope which is not just human-like, but also amazingly robust. Having obtained walking on specific well defined terrains separately, rough terrain walking is achieved by dynamically changing the extended canonical walking functions (ECWF) that the robot outputs should track at every step. The state of the robot, after every non-stance foot strike, is actively sensed and the new CWF is constructed to ensure Hybrid Zero Dynamics is respected in the next step. Finally, the technique developed is tried on different terrains in simulation and in AMBER showing how the walking gait morphs depending on the terrain. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/148284

Algorithmic Foundations of Robotics X

Algorithmic Foundations of Robotics X
Author: Emilio Frazzoli
Publisher: Springer
Total Pages: 625
Release: 2013-02-14
Genre: Technology & Engineering
ISBN: 3642362796


Download Algorithmic Foundations of Robotics X Book in PDF, Epub and Kindle

Algorithms are a fundamental component of robotic systems. Robot algorithms process inputs from sensors that provide noisy and partial data, build geometric and physical models of the world, plan high-and low-level actions at different time horizons, and execute these actions on actuators with limited precision. The design and analysis of robot algorithms raise a unique combination of questions from many elds, including control theory, computational geometry and topology, geometrical and physical modeling, reasoning under uncertainty, probabilistic algorithms, game theory, and theoretical computer science. The Workshop on Algorithmic Foundations of Robotics (WAFR) is a single-track meeting of leading researchers in the eld of robot algorithms. Since its inception in 1994, WAFR has been held every other year, and has provided one of the premiere venues for the publication of some of the eld's most important and lasting contributions. This books contains the proceedings of the tenth WAFR, held on June 13{15 2012 at the Massachusetts Institute of Technology. The 37 papers included in this book cover a broad range of topics, from fundamental theoretical issues in robot motion planning, control, and perception, to novel applications.

Experimental Robotics

Experimental Robotics
Author: M. Ani Hsieh
Publisher: Springer
Total Pages: 913
Release: 2015-11-21
Genre: Technology & Engineering
ISBN: 3319237780


Download Experimental Robotics Book in PDF, Epub and Kindle

The International Symposium on Experimental Robotics (ISER) is a series of bi-annual meetings which are organized in a rotating fashion around North America, Europe and Asia/Oceania. The goal of ISER is to provide a forum for research in robotics that focuses on novelty of theoretical contributions validated by experimental results. The meetings are conceived to bring together, in a small group setting, researchers from around the world who are in the forefront of experimental robotics research. This unique reference presents the latest advances across the various fields of robotics, with ideas that are not only conceived conceptually but also explored experimentally. It collects robotics contributions on the current developments and new directions in the field of experimental robotics, which are based on the papers presented at the 14th ISER held on June 15-18, 2014 in Marrakech and Essaouira, Morocco. This present fourteenth edition of Experimental Robotics edited by M. Ani Hsieh, Oussama Khatib, and Vijay Kumar offers a collection of a broad range of topics in field and human-ce ntered robotics.

Intelligent Robotics and Applications

Intelligent Robotics and Applications
Author: Naoyuki Kubota
Publisher: Springer
Total Pages: 809
Release: 2016-08-02
Genre: Computers
ISBN: 331943506X


Download Intelligent Robotics and Applications Book in PDF, Epub and Kindle

This two volume set LNAI 9834 and 9835 constitutes the refereed proceedings of the 9th International Conference on Intelligent Robotics and Applications, ICIRA 2016, held in Tokyo, Japan, in August 2016. The 114 papers presented were carefully reviewed and selected from 148 submissions. The papers are organized in topical sections such as Robot Control; Robot Mechanism, Robot Vision and Sensing; Planning, Localization, and Mapping; Interactive Intelligence; Cognitive Robotics; Bio-Inspired Robotics; Smart Material Based Systems; Mechatronics Systems for Nondestructive Testing; Social Robotics; Human Support Robotics; Assistive Robotics; Intelligent Space; Sensing and Monitoring in Environment and Agricultural Sciences; Human Data Analysis; Robot Hand.

Bipedal Robots

Bipedal Robots
Author: Christine Chevallereau
Publisher: John Wiley & Sons
Total Pages: 249
Release: 2013-03-01
Genre: Technology & Engineering
ISBN: 1118622979


Download Bipedal Robots Book in PDF, Epub and Kindle

This book presents various techniques to carry out the gait modeling, the gait patterns synthesis, and the control of biped robots. Some general information on the human walking, a presentation of the current experimental biped robots, and the application of walking bipeds are given. The modeling is based on the decomposition on a walking step into different sub-phases depending on the way each foot stands into contact on the ground. The robot design is dealt with according to the mass repartition and the choice of the actuators. Different ways to generate walking patterns are considered, such as passive walking and gait synthesis performed using optimization technique. Control based on the robot modeling, neural network methods, or intuitive approaches are presented. The unilaterality of contact is dealt with using on-line adaptation of the desired motion.

Human-Inspired Motion Primitives and Transitions for Bipedal Robotic Locomotion in Diverse Terrain

Human-Inspired Motion Primitives and Transitions for Bipedal Robotic Locomotion in Diverse Terrain
Author: Huihua Zhao
Publisher:
Total Pages: 57
Release: 2015
Genre:
ISBN:


Download Human-Inspired Motion Primitives and Transitions for Bipedal Robotic Locomotion in Diverse Terrain Book in PDF, Epub and Kindle

This thesis presents a control design approach, which uses human data in the development of bipedal robotic control techniques for multiple locomotion behaviors. Insight into the fundamental behaviors of human locomotion is obtained through the examination of experimental human data for level walking, stair ascending, stair descending and running. Specifically, it is shown that certain outputs of the human, independent of locomotion terrain, can be characterized by a single function, termed the extended canonical human function. Through feedback linearization, human-inspired locomotion controllers are leveraged to drive the outputs of the simulated robot, via the extended canonical human function, to the outputs from human locomotion. An optimization problem, subject to the constraints of partial hybrid zero dynamics, is presented which yields parameters of these controllers that provide the best fit to human data while simultaneously ensuring stability of the controlled bipedal robot. The resulting behaviors are stable locomotion on flat ground, upstairs, downstairs and running - these four locomotion modes are termed "motion primitives". A second optimization is presented, which yields controllers that evolve the robot from one motion primitive to another - these modes of locomotion are termed "motion transitions". A directed graph consisting these motion primitives and motion transitions has been constructed for the stable motion planning of bipedal locomotion. A final simulation is given, which shows the controlled evolution of a robotic biped as it transitions through each mode of locomotion over a pyramidal staircase. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/155150

Robot Motion and Control 2011

Robot Motion and Control 2011
Author: Krzysztof Kozłowski
Publisher: Springer
Total Pages: 425
Release: 2012-01-13
Genre: Technology & Engineering
ISBN: 1447123433


Download Robot Motion and Control 2011 Book in PDF, Epub and Kindle

Robot Motion Control 2011 presents very recent results in robot motion and control. Forty short papers have been chosen from those presented at the sixth International Workshop on Robot Motion and Control held in Poland in June 2011. The authors of these papers have been carefully selected and represent leading institutions in this field. The following recent developments are discussed: Design of trajectory planning schemes for holonomic and nonholonomic systems with optimization of energy, torque limitations and other factors. New control algorithms for industrial robots, nonholonomic systems and legged robots. Different applications of robotic systems in industry and everyday life, like medicine, education, entertainment and others. Multiagent systems consisting of mobile and flying robots with their applications The book is suitable for graduate students of automation and robotics, informatics and management, mechatronics, electronics and production engineering systems as well as scientists and researchers working in these fields.

Planar Multicontact Locomotion Using Hybrid Zero Dynamics

Planar Multicontact Locomotion Using Hybrid Zero Dynamics
Author: Jordan T. Lack
Publisher:
Total Pages: 86
Release: 2014
Genre:
ISBN:


Download Planar Multicontact Locomotion Using Hybrid Zero Dynamics Book in PDF, Epub and Kindle

This thesis proposes a method for generating multi-contact, humanlike locomotion via a human-inspired optimization. The chief objective of this work is to offer an initial solution for obtaining multi-domain walking gaits containing domains with differing degrees of actuation. Motivated by the fact that locomotion inherently includes impacts, a hybrid systems approach is used. Through Lagrangian mechanics, a dynamic model of the system is derived that governs the continuous dynamics, while the dynamics during the impacts are modeled assuming perfectly plastic impacts in which the ground imparts an impulsive force on the impacting link. Using the dynamic model of the planar bipedal robot Amber 2, a seven link biped, a human-inspired optimization is presented which leverages the concept of zero dynamics, allowing for a low dimensional representation of the full order dynamics. Within the optimization, constraints are constructed based on the interaction be- tween the robot and the walking surface that ensure the optimized gait is physically realizable. Other constraints can be used to influence or "shape" the optimized walking gait such as kinematic and/or torque constraints. This optimized walking gait is then realized through the method of Input/Output Linearization. Finally, the utilization of online optimization in the form of a quadratic program increase the capabilities of simple Input/Output Linearization by introducing a notion of optimality as well as the ability to distribute torque as necessary to meet actuator requirements. Ultimately the combination of the flexability of the human-inspired optimization along with the controllers described result in not only multi-domain human-like walking, but even more importantly a tool for rapidly designing new walking gaits. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151833

Modeling and Control for Efficient Bipedal Walking Robots

Modeling and Control for Efficient Bipedal Walking Robots
Author: Vincent Duindam
Publisher: Springer Science & Business Media
Total Pages: 219
Release: 2009-01-17
Genre: Technology & Engineering
ISBN: 3540899170


Download Modeling and Control for Efficient Bipedal Walking Robots Book in PDF, Epub and Kindle

By the dawn of the new millennium, robotics has undergone a major tra- formation in scope and dimensions. This expansion has been brought about bythematurityofthe?eldandtheadvancesinitsrelatedtechnologies.From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities,providingsupportinservices,entertainment,education,heal- care, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across - verse researchareas and scienti?c disciplines, such as: biomechanics, haptics, neurosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are pr- ing an abundant source of stimulation and insights for the ?eld of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their signi?cance and quality. It is our hope that the wider dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing ?eld.

Modeling, Simulation and Optimization of Bipedal Walking

Modeling, Simulation and Optimization of Bipedal Walking
Author: Katja Mombaur
Publisher: Springer Science & Business Media
Total Pages: 289
Release: 2013-02-28
Genre: Technology & Engineering
ISBN: 3642363687


Download Modeling, Simulation and Optimization of Bipedal Walking Book in PDF, Epub and Kindle

The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired control algorithms for bipedal walking Generation and deformation of natural walking in computer graphics Imitation of human motions on humanoids Emotional body language during walking Simulation of biologically inspired actuators for bipedal walking machines Modeling and simulation techniques for the development of prostheses Functional electrical stimulation of walking.