Bioinspired Legged Locomotion

Bioinspired Legged Locomotion
Author: Maziar Ahmad Sharbafi
Publisher: Butterworth-Heinemann
Total Pages: 698
Release: 2017-11-21
Genre: Technology & Engineering
ISBN: 0128037741


Download Bioinspired Legged Locomotion Book in PDF, Epub and Kindle

Bioinspired Legged Locomotion: Models, Concepts, Control and Applications explores the universe of legged robots, bringing in perspectives from engineering, biology, motion science, and medicine to provide a comprehensive overview of the field. With comprehensive coverage, each chapter brings outlines, and an abstract, introduction, new developments, and a summary. Beginning with bio-inspired locomotion concepts, the book's editors present a thorough review of current literature that is followed by a more detailed view of bouncing, swinging, and balancing, the three fundamental sub functions of locomotion. This part is closed with a presentation of conceptual models for locomotion. Next, the book explores bio-inspired body design, discussing the concepts of motion control, stability, efficiency, and robustness. The morphology of legged robots follows this discussion, including biped and quadruped designs. Finally, a section on high-level control and applications discusses neuromuscular models, closing the book with examples of applications and discussions of performance, efficiency, and robustness. At the end, the editors share their perspective on the future directions of each area, presenting state-of-the-art knowledge on the subject using a structured and consistent approach that will help researchers in both academia and industry formulate a better understanding of bioinspired legged robotic locomotion and quickly apply the concepts in research or products. Presents state-of-the-art control approaches with biological relevance Provides a thorough understanding of the principles of organization of biological locomotion Teaches the organization of complex systems based on low-dimensional motion concepts/control Acts as a guideline reference for future robots/assistive devices with legged architecture Includes a selective bibliography on the most relevant published articles

Bio-Inspired Robotics

Bio-Inspired Robotics
Author: Toshio Fukuda
Publisher: MDPI
Total Pages: 555
Release: 2018-11-07
Genre: Technology & Engineering
ISBN: 303897045X


Download Bio-Inspired Robotics Book in PDF, Epub and Kindle

This book is a printed edition of the Special Issue "Bio-Inspired Robotics" that was published in Applied Sciences

Multi-Locomotion Robotic Systems

Multi-Locomotion Robotic Systems
Author: Toshio Fukuda
Publisher: Springer
Total Pages: 317
Release: 2012-06-15
Genre: Technology & Engineering
ISBN: 3642301355


Download Multi-Locomotion Robotic Systems Book in PDF, Epub and Kindle

Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as hardware of Multi-Locomotion Robotic system. It is useful for students and researchers in the field of robotics in general, bio-inspired robots, multi-modal locomotion, legged walking, motion control, and humanoid robots. Furthermore, it is also of interest for lecturers and engineers in practice building systems cooperating with humans.

Legged Robots that Balance

Legged Robots that Balance
Author: Marc H. Raibert
Publisher: MIT Press
Total Pages: 254
Release: 1986
Genre: Computers
ISBN: 9780262181174


Download Legged Robots that Balance Book in PDF, Epub and Kindle

This book, by a leading authority on legged locomotion, presents exciting engineering and science, along with fascinating implications for theories of human motor control. It lays fundamental groundwork in legged locomotion, one of the least developed areas of robotics, addressing the possibility of building useful legged robots that run and balance. The book describes the study of physical machines that run and balance on just one leg, including analysis, computer simulation, and laboratory experiments. Contrary to expectations, it reveals that control of such machines is not particularly difficult. It describes how the principles of locomotion discovered with one leg can be extended to systems with several legs and reports preliminary experiments with a quadruped machine that runs using these principles. Raibert's work is unique in its emphasis on dynamics and active balance, aspects of the problem that have played a minor role in most previous work. His studies focus on the central issues of balance and dynamic control, while avoiding several problems that have dominated previous research on legged machines. Marc Raibert is Associate Professor of Computer Science and Robotics at Carnegie-Mellon University and on the editorial board of The MIT Press journal, Robotics Research. Legged Robots That Balanceis fifteenth in the Artificial Intelligence Series, edited by Patrick Winston and Michael Brady.

Biologically Inspired Approaches for Locomotion, Anomaly Detection and Reconfiguration for Walking Robots

Biologically Inspired Approaches for Locomotion, Anomaly Detection and Reconfiguration for Walking Robots
Author: Bojan Jakimovski
Publisher: Springer Science & Business Media
Total Pages: 203
Release: 2011-08-20
Genre: Technology & Engineering
ISBN: 3642225055


Download Biologically Inspired Approaches for Locomotion, Anomaly Detection and Reconfiguration for Walking Robots Book in PDF, Epub and Kindle

The increasing presence of mobile robots in our everyday lives introduces the requirements for their intelligent and autonomous features. Therefore the next generation of mobile robots should be more self-capable, in respect to: increasing of their functionality in unforeseen situations, decreasing of the human involvement in their everyday operations and their maintenance; being robust; fault tolerant and reliable in their operation. Although mobile robotic systems have been a topic of research for decades and aside the technology improvements nowadays, the subject on how to program and making them more autonomous in their operations is still an open field for research. Applying bio-inspired, organic approaches in robotics domain is one of the methodologies that are considered that would help on making the robots more autonomous and self-capable, i.e. having properties such as: self-reconfiguration, self-adaptation, self-optimization, etc. In this book several novel biologically inspired approaches for walking robots (multi-legged and humanoid) domain are introduced and elaborated. They are related to self-organized and self-stabilized robot walking, anomaly detection within robot systems using self-adaptation, and mitigating the faulty robot conditions by self-reconfiguration of a multi-legged walking robot. The approaches presented have been practically evaluated in various test scenarios, the results from the experiments are discussed in details and their practical usefulness is validated.

Adaptive Mobile Robotics

Adaptive Mobile Robotics
Author: Abul K. M. Azad
Publisher: World Scientific
Total Pages: 904
Release: 2012
Genre: Technology & Engineering
ISBN: 9814415944


Download Adaptive Mobile Robotics Book in PDF, Epub and Kindle

This book provides state-of-the-art scientific and engineering research findings and developments in the area of mobile robotics and associated support technologies. The book contains peer reviewed articles presented at the CLAWAR 2012 conference. Robots are no longer confined to industrial and manufacturing environments. A great deal of interest is invested in the use of robots outside the factory environment. The CLAWAR conference series, established as a high profile international event, acts as a platform for dissemination of research and development findings and supports such a trend to address the current interest in mobile robotics to meet the needs of mankind in various sectors of the society. These include personal care, public health, services in the domestic, public and industrial environments. The editors of the book have extensive research experience and publications in the area of robotics in general and in mobile robotics specifically, and their experience is reflected in editing the contents of the book.

Quadrupedal Locomotion

Quadrupedal Locomotion
Author: Pablo González de Santos
Publisher: Springer Science & Business Media
Total Pages: 272
Release: 2007-02-17
Genre: Technology & Engineering
ISBN: 1846283078


Download Quadrupedal Locomotion Book in PDF, Epub and Kindle

Walking machines have advantages over traditional vehicles, and have already accomplished tasks that wheeled or tracked robots cannot handle. Nevertheless, their use in industry and services is currently limited in scope. This book brings together methods and techniques that have been developed to deal with obstacles to wider acceptance of legged robots. Part I provides an historical overview. Part II concentrates on control techniques, as applied to Four-legged robots.

Biological, Robotic, and Physics Studies to Discover Principles of Legged Locomotion on Granular Media

Biological, Robotic, and Physics Studies to Discover Principles of Legged Locomotion on Granular Media
Author: Chen Li
Publisher:
Total Pages:
Release: 2011
Genre: Granular materials
ISBN:


Download Biological, Robotic, and Physics Studies to Discover Principles of Legged Locomotion on Granular Media Book in PDF, Epub and Kindle

Terrestrial animals encounter natural surfaces which comprise materials that can yield and flow such as sand, rubble, and debris, yet appear to nimbly walk, run, crawl, or climb across them with great ease. In contrast, man-made devices on wheels and treads suffer large performance loss on these surfaces. Legged locomotion thus provides an excellent source of inspiration for creating devices of increased locomotor capabilities on natural surfaces. While principles of legged locomotion on solid ground have been discovered, the mechanisms by which legged animals move on yielding/flowing surfaces remain poorly understood, largely due to the lack of fundamental understanding of the complex interactions of body/limbs with these substrates on the level of the Navier-Stokes Equations for fluids. Granular media (e.g., sand) provide a promising model substrate for discovering the principles of legged locomotion on yielding/flowing surfaces, because they can display solid- and fluid-like behaviors, are directly relevant for many desert-dwelling animals, can be repeatably and precisely controlled, and the intrusion force laws can be determined empirically. In this dissertation, we created laboratory devices to prepare granular media in well-controlled states, and integrated biological, robotic, and physics studies to discover principles of legged locomotion on granular media. For both animals and bio-inspired robots, legged locomotion on granular surfaces must be achieved by limb intrusion to generate sufficient vertical ground reaction force (lift) to balance body weight and inertial force. When limb intrusion was slow (speed