Biodiesel Production Using Reactive Distillation Column Based on Intensification Processes

Biodiesel Production Using Reactive Distillation Column Based on Intensification Processes
Author: António André Chivanga Barros
Publisher:
Total Pages: 0
Release: 2019
Genre: Electronic books
ISBN:


Download Biodiesel Production Using Reactive Distillation Column Based on Intensification Processes Book in PDF, Epub and Kindle

Environment concerns related to the use of fossil fuels are reflected in proposals for new conversion technologies to produce biofuels from biomass. The biofuels produced in this context have the same characteristics as petroleum derivatives, however, with reduced greenhouse gas emissions and with no sulfur in their molecular structures. In this context, a reactive distillation (RD) column was designed, constructed, installed, and operated using process intensification principles. It was applied in the production of biodiesel, using residual frying oil as the raw material, by the transesterification reaction, in a continuous regime. The process started with alcohol in excess in the reboiler, located in the bottom of the RD, which was heated through the combustion of liquefied petroleum gas (LPG) to produce ethanol vapor, which was recirculated in the column until stabilization. In this stage, the reagents were inserted into the feed tanks. Thus, the tank valves were opened for each reactant. The reaction products were recovered during the experiment from the bottom of the column and they were distilled to obtain two phases, biodiesel and glycerol. The results obtained from this study show that the use of an RD column can produce biodiesel in a continuous regime.

Process Intensification Technologies for Biodiesel Production

Process Intensification Technologies for Biodiesel Production
Author: Anton Alexandru Kiss
Publisher: Springer Science & Business Media
Total Pages: 109
Release: 2014-03-15
Genre: Technology & Engineering
ISBN: 3319035541


Download Process Intensification Technologies for Biodiesel Production Book in PDF, Epub and Kindle

This book is among the first to address the novel process intensification technologies for biodiesel production, in particular the integrated reactive separations. It provides a comprehensive overview illustrated with many industrially relevant examples of novel reactive separation processes used in the production of biodiesel (e.g. fatty acid alkyl esters): reactive distillation, reactive absorption, reactive extraction, membrane reactors, and centrifugal contact separators. Readers will also learn about the working principles, design and control of integrated processes, while also getting a relevant and modern overview of the process intensification opportunities for biodiesel synthesis. Biodiesel is a biodegradable and renewable fuel that currently enjoys much attention. In spite of the recent advances, the existing biodiesel processes still suffer from problems associated with the use of homogeneous catalysts (e.g. salt waste streams) and the key limitations imposed by the chemical reaction equilibrium, thus leading to severe economic and environmental penalties. The integration of reaction and separation into one operating unit overcomes equilibrium limitations and provides key benefits such as low capital investment and operating costs. Many of these processes can be further enhanced by heat-integration and powered by heterogeneous catalysts, to eliminate all conventional catalyst related operations, using the raw materials efficiently and the reaction volume, while offering high conversion and selectivity, and significant energy savings. The targeted audience of this book includes both academia (students and researchers) and industry (project leaders, technology managers, researchers, biodiesel producers, and equipment suppliers).

Process Intensification

Process Intensification
Author: Fernando Israel Gómez-Castro
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 338
Release: 2019-10-21
Genre: Technology & Engineering
ISBN: 3110596121


Download Process Intensification Book in PDF, Epub and Kindle

Intensified processes have found widespread application in the chemical and petrochemical industries. The use of intensified systems allows for a reduction of operating costs and supports the “greening” of chemical processes. However, the design of intensified equipment requires special methodologies. This book describes the fundamentals and applications of these design methods, making it a valuable resource for use in both industry and academia.

Process Synthesis and Process Intensification

Process Synthesis and Process Intensification
Author: Ben-Guang Rong
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 426
Release: 2017-09-25
Genre: Science
ISBN: 311046506X


Download Process Synthesis and Process Intensification Book in PDF, Epub and Kindle

Process synthesis and process intensification are becoming state-of-the-art scientific fields that provide the methods and tools to improve process technologies in terms of high energy efficiency, low capital investment, low emissions, improved safety, and less hazardous byproducts to achieve sustainable products and processes. The book covers manufacturing processes from both fossil- and biomass-based feedstocks for graduate students.

Reactive Separation for Process Intensification and Sustainability

Reactive Separation for Process Intensification and Sustainability
Author: Carlos Ariel Cardona Alzate
Publisher: CRC Press
Total Pages: 157
Release: 2019-12-23
Genre: Science
ISBN: 1000751252


Download Reactive Separation for Process Intensification and Sustainability Book in PDF, Epub and Kindle

This book describes, analyses and discusses the main principles, phenomena and design strategies of reactive separation processes with an emphasis on the intensification as a basis of the sustainability. Different reactive separation processes are explained in detail to show the phenomena and with the purpose of understanding when their use allows advantages based on the output results. Case examples are analysed and the perspective of these processes in the future is discussed. The overall sustainability of reactive separation processes in the industry is also explained separately.

Process Intensification

Process Intensification
Author: David Reay
Publisher: Butterworth-Heinemann
Total Pages: 624
Release: 2013-06-05
Genre: Technology & Engineering
ISBN: 0080983057


Download Process Intensification Book in PDF, Epub and Kindle

Process Intensification: Engineering for Efficiency, Sustainability and Flexibility is the first book to provide a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems. Process intensification is a chemical and process design approach that leads to substantially smaller, cleaner, safer, and more energy efficient process technology. It improves process flexibility, product quality, speed to market and inherent safety, with a reduced environmental footprint. This book represents a valuable resource for engineers working with leading-edge process technologies, and those involved research and development of chemical, process, environmental, pharmaceutical, and bioscience systems. No other reference covers both the technology and application of PI, addressing fundamentals, industry applications, and including a development and implementation guide Covers hot and high growth topics, including emission prevention, sustainable design, and pinch analysis World-class authors: Colin Ramshaw pioneered PI at ICI and is widely credited as the father of the technology

Intensification of Biobased Processes

Intensification of Biobased Processes
Author: Andrzej Górak
Publisher: Royal Society of Chemistry
Total Pages: 456
Release: 2018-06-18
Genre: Technology & Engineering
ISBN: 178801457X


Download Intensification of Biobased Processes Book in PDF, Epub and Kindle

In recent years bioprocessing has increased in popularity and importance, however, bioprocessing still poses various important techno-economic and environmental challenges, such as product yields, excessive energy consumption for separations in highly watery systems, batch operation or the downstream processing bottlenecks in the production of biopharmaceutical products. Many of those challenges can be addressed by application of different process intensification technologies discussed in the present book. The first book dedicated entirely to this area, Intensification of Biobased Processes provides a comprehensive overview of modern process intensification technologies used in bioprocessing. The book focusses on four different categories of biobased products: bio-fuels and platform chemicals; cosmeceuticals; food products; and polymers and advanced materials. It will cover various intensification aspects of the processes concerned, including (bio)reactor intensification; intensification of separation, recovery and formulation operations; and process integration. This is an invaluable source of information for researchers and industrialists working in chemical engineering, biotechnology and process engineering.

Process Intensification in Chemical Engineering

Process Intensification in Chemical Engineering
Author: Juan Gabriel Segovia-Hernández
Publisher: Springer
Total Pages: 341
Release: 2016-04-02
Genre: Science
ISBN: 3319283928


Download Process Intensification in Chemical Engineering Book in PDF, Epub and Kindle

This book will provide researchers and graduate students with an overview of the recent developments and applications of process intensification in chemical engineering. It will also allow the readers to apply the available intensification techniques to their processes and specific problems. The content of this book can be readily adopted as part of special courses on process control, design, optimization and modelling aimed at senior undergraduate and graduate students. This book will be a useful resource for researchers in process system engineering as well as for practitioners interested in applying process intensification approaches to real-life problems in chemical engineering and related areas.

Process Intensification Technologies for Green Chemistry

Process Intensification Technologies for Green Chemistry
Author: Kamelia Boodhoo
Publisher: John Wiley & Sons
Total Pages: 400
Release: 2013-01-03
Genre: Science
ISBN: 1118498534


Download Process Intensification Technologies for Green Chemistry Book in PDF, Epub and Kindle

The successful implementation of greener chemical processes relies not only on the development of more efficient catalysts for synthetic chemistry but also, and as importantly, on the development of reactor and separation technologies which can deliver enhanced processing performance in a safe, cost-effective and energy efficient manner. Process intensification has emerged as a promising field which can effectively tackle the challenges of significant process enhancement, whilst also offering the potential to diminish the environmental impact presented by the chemical industry. Following an introduction to process intensification and the principles of green chemistry, this book presents a number of intensified technologies which have been researched and developed, including case studies to illustrate their application to green chemical processes. Topics covered include: • Intensified reactor technologies: spinning disc reactors, microreactors, monolith reactors, oscillatory flow reactors, cavitational reactors • Combined reactor/separator systems: membrane reactors, reactive distillation, reactive extraction, reactive absorption • Membrane separations for green chemistry • Industry relevance of process intensification, including economics and environmental impact, opportunities for energy saving, and practical considerations for industrial implementation. Process Intensification for Green Chemistry is a valuable resource for practising engineers and chemists alike who are interested in applying intensified reactor and/or separator systems in a range of industries to achieve green chemistry principles.