An Experimental Investigation of Turbulence and Unsteady Loading on Tidal Turbines

An Experimental Investigation of Turbulence and Unsteady Loading on Tidal Turbines
Author: Ian Angus Milne
Publisher:
Total Pages: 228
Release: 2013
Genre: Hydraulic turbines
ISBN:


Download An Experimental Investigation of Turbulence and Unsteady Loading on Tidal Turbines Book in PDF, Epub and Kindle

This research addresses the need for an improved characterisation of the onset flow turbulence and the unsteady hydrodynamic blade loads on tidal turbines for the purposes of predicting fatigue life. A new, extensive set of parameters which characterise the magnitudes of the turbulent fluctuations, the anisotropy and the scales of the turbulence at a tidal energy site have been presented. A novel application of rapid distortion theory estimated the velocity fluctuations to be amplified by 15% due to the presence of the turbine. The turbulence was also predicted to be well correlated over the outer span of a turbine blade at the frequencies of interest. Together, these results enabled a set of non-dimensional parameters describing the turbulence induced forcing on a turbine blade to be established. A model-scale horizontal-axis turbine was used to investigate the unsteady blade load response in a still-water towing tank. A set of wind tunnel tests of the S814 foil were also conducted and used to demonstrate that the lift on the blades could have been degraded by 10% at the relatively low Reynolds numbers at which the turbine was tested, relative to full-scale. This was owing to dominant laminar separation bubbles. Single frequency planar oscillations of the turbine were used to quantify the contribution of hydrodynamic unsteadiness to the blade-root bending moment. For attached flow, the unsteady bending moment was found to amplify the steady loads by up to 15 %. The total hydrodynamic added mass was up to 2.7 times larger than from non-circulatory forcing and decreased with frequency. Dynamic inflow theory and a returning wake model were able to provide qualitative predictions of these results at low frequencies. At low tip-speed ratios, phenomena consistent with delayed separation and dynamic stall were characterised and the unsteady loading was up to 25% larger than the steady load. Linear superposition of the single frequency responses was also demonstrated to offer a reliable technique to model the response to a multi-frequency forcing and to a large eddy.

Tidal Turbine Benchmarking Project: Stage I - Steady Flow Blind Predictions: Preprint

Tidal Turbine Benchmarking Project: Stage I - Steady Flow Blind Predictions: Preprint
Author:
Publisher:
Total Pages: 0
Release: 2023
Genre:
ISBN:


Download Tidal Turbine Benchmarking Project: Stage I - Steady Flow Blind Predictions: Preprint Book in PDF, Epub and Kindle

This paper presents the first blind prediction stage of the Tidal Turbine Benchmarking Project being conducted and funded by the UK's EPSRC and Supergen ORE Hub. In this first stage, only steady flow conditions, at low and elevated turbulence (3.1%) levels, were considered. Prior to the blind prediction stage, a large laboratory scale experiment was conducted in which a highly instrumented 1.6m diameter tidal rotor was towed through a large towing tank in well-defined flow conditions with and without an upstream turbulence grid. Details of the test campaign and rotor design were released as part of this community blind prediction exercise. Participants were invited to use a range of engineering modelling approaches to simulate the performance and loads of the turbine. 26 submissions were received from 12 groups from across academia and industry using solution techniques ranging from blade resolved computational fluid dynamics through actuator line, boundary integral element methods, vortex methods to engineering Blade Element Momentum methods. The comparisons between experiments and blind predictions were extremely positive helping to provide validation and uncertainty estimates for the models, but also validating the experimental tests themselves. The exercise demonstrated that the experimental turbine data provides a robust data set against which researchers and design engineers can test their models and implementations to ensure robustness in their processes, helping to reduce uncertainty and provide increased confidence in engineering processes. Furthermore, the data set provides the basis by which modellers can evaluate and refine approaches.

CFD Analysis of Unsteady Hydrodynamic Loading on Horizontal Axis Tidal Turbine (HATT) Blades

CFD Analysis of Unsteady Hydrodynamic Loading on Horizontal Axis Tidal Turbine (HATT) Blades
Author: Xue Wang
Publisher:
Total Pages: 0
Release: 2015
Genre:
ISBN:


Download CFD Analysis of Unsteady Hydrodynamic Loading on Horizontal Axis Tidal Turbine (HATT) Blades Book in PDF, Epub and Kindle

Horizontal Axis Tidal Turbines (HATTs) can experience amplified, time varying hydrodynamic loads during operation due to dynamic stall. Elevated hydrodynamic loads impose high structural loads on turbine blades, thus appreciably shortening machine service life. An improved characterization of the unsteady hydrodynamic loads on tidal turbine blades is therefore necessary to enable more reliable predictions of their fatigue life and to avoid premature failures. This thesis reports on a Computational Fluid Dynamics (CFD) analysis of the unsteady blade loading of a scale-model HATT taking dynamic stall into account. Numerical simulations are performed both in two-dimensional (2-D) and three-dimensional (3-D) using the commercial CFD solver ANSYS Fluent.After a brief description of the theories and methods involved, the behaviour of flow at low Reynolds number around a NACA-0012 aerofoil pitching in a sinusoidal pattern that induces dynamic stall is studied firstly to validate the numerical method and the choice of turbulence models. Then full 3-D computations of a rotating scale-model HATT rotor are presented for steady and periodic unsteady inflow situations, respectively. The reliability of the 3-D numerical method is evaluated by comparing the blade loads, especially the out-of-plane blade-root bending moment (defined as being about an axis normal to the rotor axis), with measurement data obtained from experimental tests conducted at the University of Strathclyde's Kelvin Hydrodynamics Laboratory towing tank. Analyses in the steady velocity study are documented for a broad range of rotor speeds and flow velocities. Furthermore, investigations of 3-D flow separation and scale effects on blade loads are also performed.The periodic unsteady velocity study aims to examine the out-of-plane blade-root bending moment response to harmonic axial motion, deemed representative of the free-stream velocity perturbations induced by the unsteady flow. Parametric tests on oscillatory frequencies and amplitudes are carried out in order to analyse the HATT blade hydrodynamic behaviour under different flow patterns. Detailed flow field data is analysed to understand 3-D dynamic stall from a modelling perspective.It is concluded that the results by the present study provide significant insights into the flow physics occurring around the HATT rotor blades under various flow conditions. The CFD method can be used for designing more advanced HATT rotors, it also can be used to fine tune the computationally faster lower order Blade Element Momentum (BEM) methods for parametric design studies where experimental data is not available, particularly at the challenging rotor operating conditions involving flow separation and dynamically varying hydrodynamic behaviours.