Ammonia Fuel Cells

Ammonia Fuel Cells
Author: Ibrahim Dincer
Publisher: Elsevier
Total Pages: 266
Release: 2020-04-09
Genre: Science
ISBN: 0128228253


Download Ammonia Fuel Cells Book in PDF, Epub and Kindle

Ammonia Fuel Cells covers all aspects of ammonia fuel cell technologies and their applications, including their theoretical analysis, modeling studies and experimental investigations. The book analyzes the role of integrated ammonia fuel cell systems within various renewable energy resources and existing energy systems. Covers the types of ammonia fuel cells that have been developed over history Features explanations of the underlying fundamentals and principles of ammonia fuel cells, along with methods to assess the performance of different types of cell Includes case studies considering different applications of ammonia fuel cells and their significance in the future of clean energy

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports
Author:
Publisher:
Total Pages: 488
Release: 1995
Genre: Aeronautics
ISBN:


Download Scientific and Technical Aerospace Reports Book in PDF, Epub and Kindle

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

The Hydrogen Economy

The Hydrogen Economy
Author: National Academy of Engineering
Publisher: National Academies Press
Total Pages: 257
Release: 2004-09-05
Genre: Science
ISBN: 0309091632


Download The Hydrogen Economy Book in PDF, Epub and Kindle

The announcement of a hydrogen fuel initiative in the President's 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation's long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation's future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.

Testing Performance of the Fuel Processor Subsystem of an Automotive Fuel Cell System

Testing Performance of the Fuel Processor Subsystem of an Automotive Fuel Cell System
Author: Fuel Cell Standards Committee
Publisher:
Total Pages: 0
Release: 2011
Genre:
ISBN:


Download Testing Performance of the Fuel Processor Subsystem of an Automotive Fuel Cell System Book in PDF, Epub and Kindle

This recommended practice is intended to serve as a design verification procedure and not a product qualification procedure. It may be used to verify design specifications or vendor claims. Test procedures, methods and definitions for the performance of the fuel processor subsystem (FPS) of a fuel cell system (FCS) are provided. Fuel processor subsystems (FPS) include all components required in the conversion of input fuel and oxidizer into a hydrogen-rich product gas stream suitable for use in fuel cells. Performance of the fuel processor subsystem includes evaluating system energy inputs and useful outputs to determine fuel conversion efficiency and where applicable the overall thermal effectiveness. Each of these performance characterizations will be determined to an uncertainty of less than ± 2% of the value.The method allows for the evaluation of fuel processor subsystems for two general cases. Compare fuel processors with different designs (e.g., catalytic partial oxidation reforming, autothermal reforming or steam reforming) on a common basis where no specific fuel cell system design has been identified. Assess the performance of a specific fuel processor in the context of a specific fuel cell system design.This document applies to all fuel processor subsystems for transportation applications regardless of fuel processor type, fuel cell type, electrical power output, thermal output, or system application (propulsion or auxiliary power unit (APU)). For example, the fuel processor subsystems associated with proton exchange, molten carbonate and solid oxide fuel cells can differ due to the requirements of the fuel cells themselves.Performance of the fuel processor subsystem, and preprocessor if applicable, is evaluated. A stand alone fuel processor "system" or even the primary reactor (e.g., autothermal, partial oxidation or steam reforming reactor) of a fuel processor subsystem that would normally be integrated into a fuel cell system can be evaluated. The fuel processor together with the preprocessor (if required) converts the fuel (gasoline or other liquid hydrocarbon) to a reformate gas consisting largely of H2, CO, CO2, H2O and N2 (if air is used). After the fuel processor subsystem, reformate gas typically contains only trace levels of carbon bearing components higher than C1. The FPS would be evaluated in a test facility that is designed to evaluate a stand-alone component rather than a portion of the reformer such as a specific catalyst or a particular vessel design.Any fuel(s) mutually agreed to by the test parties can be used such as 1) straight run gasoline (EPA Fuel-CARB reformulated gasoline Tier II, 30 ppm sulfur), or 2) methanol or 3) hydrocarbon fuel such as iso-octane, naptha, diesel, liquefied natural gas (LNG) or LPG (propane), etc.The procedures provide a point-in-time evaluation of the performance of the fuel processor subsystem. Steady state and transient (start-up and load-following) performance are included. Methods and procedures for conducting and reporting fuel processor testing, including instrumentation to be used, testing techniques, and methods for calculating and reporting results are provided. The boundary limits for fuel and oxidant input, secondary energy input and net energy output are defined. Procedures for measuring temperature, pressure, input fuel flow and composition, electrical power and thermal output at the boundaries are provided.Procedures for determination of the FPS performance measures such as fuel processor efficiency and cold gas efficiency at a rated load or any other steady state condition are provided. Methods to correct results from the test conditions to reference conditions are provided.SI units are used throughout the recommended practice document. The committee cannot find users for the technical report.

Hydrogen Energy and Fuel Cells

Hydrogen Energy and Fuel Cells
Author: European Commission. Directorate General for Research
Publisher:
Total Pages: 38
Release: 2003
Genre: Fuel cells
ISBN:


Download Hydrogen Energy and Fuel Cells Book in PDF, Epub and Kindle

Hydrogen and Fuel Cells

Hydrogen and Fuel Cells
Author: Bent Sørensen
Publisher: Academic Press
Total Pages: 507
Release: 2011-11-14
Genre: Science
ISBN: 0123877091


Download Hydrogen and Fuel Cells Book in PDF, Epub and Kindle

A hydrogen economy, in which this one gas provides the source of all energy needs, is often touted as the long-term solution to the environmental and security problems associated with fossil fuels. However, before hydrogen can be used as fuel on a global scale we must establish cost effective means of producing, storing, and distributing the gas, develop cost efficient technologies for converting hydrogen to electricity (e.g. fuel cells), and creating the infrastructure to support all this. Sorensen is the only text available that provides up to date coverage of all these issues at a level appropriate for the technical reader. The book not only describes the "how" and "where" aspects of hydrogen fuels cells usage, but also the obstacles and benefits of its use, as well as the social implications (both economically and environmental). Written by a world-renowned researcher in energy systems, this thoroughly illustrated and cross-referenced book is an excellent reference for researchers, professionals and students in the field of renewable energy. Updated sections on PEM fuel cells, Molten carbonate cells, Solid Oxide cells and Biofuel cells Updated material to reflect the growing commercial acceptance of stationary and portable fuel cell systems, while also recognizing the ongoing research in automotive fuel cell systems A new example of a regional system based on renewable energy sources reflects the growing international attention to uses of renewable energy as part of the energy grid Examples of life cycle analysis of environmental and social impacts

Fuel Cells for Transportation

Fuel Cells for Transportation
Author: Prodip K. Das
Publisher: Elsevier
Total Pages: 642
Release: 2023-05-19
Genre: Science
ISBN: 0323994865


Download Fuel Cells for Transportation Book in PDF, Epub and Kindle

Fuel Cells for Transportation: Fundamental Principles and Applications is the first comprehensive reference on the application of fuel cells for light- and heavy-duty transportation. Addressing the subject from both a materials and engineering perspective, the book examines integration, modeling, and optimization of fuel cells from fundamentals to the latest advances. Chapters address every aspect of fuel cell systems for transport applications, including performance optimization, stack characterization, low-cost materials and catalysts, design of bipolar plates and flow fields, water and thermal management, durability under automotive driving cycles, cold start, state of the art characterization, optimization of various components, and more. Each chapter reviews the fundamental principles of the topic before going on to examine the latest developments alongside current applications and real-world case studies. This is an essential reference for graduate students and researchers working on fuel cells for transport applications, as well as professional engineers involved in the application of fuel cells and clean energy and working in any sector of the transportation industry. Presents a comprehensive examination of the technologies, integration and application of fuel cells for transportation, from the fundamentals to the latest advances Examines the latest challenges, market outlooks and targets for fuel cells in light-duty and heavy-duty vehicles Offers solutions to fuel-cell system integration problems, optimization of operating conditions, and improvements for fuel-cell materials based on the latest developments Addresses key barriers to the commercial success of fuel cells for transportation, including durability, performance, materials and how to balance these factors