AlGaN/GaN HEMTs Reliability. Degradation Modes and Analysis

AlGaN/GaN HEMTs Reliability. Degradation Modes and Analysis
Author: Ponky Ivo
Publisher: Cuvillier
Total Pages: 0
Release: 2012-10-25
Genre: Gallium nitride
ISBN: 9783954042593


Download AlGaN/GaN HEMTs Reliability. Degradation Modes and Analysis Book in PDF, Epub and Kindle

AlGaN/GaN HEMTs reliability and stability issues were investigated in dependence on epitaxial design and process modification. DC-Step-Stress-Tests have been performed on wafers as a fast device robustness screening method. As a criterion of robustness they deliver a critical source-drain voltage for the onset of degradation. Several degradation modes were observed which depend on epi design, epi quality and process technology. Electrical and optical characterizations together with electric field simulations were performed to get insight into respective degradation modes. It has been found that AlGaN/GaN HEMT devices with GaN cap show higher critical source-drain voltages as compared to non-capped devices. Devices with low Al concentration in the AlGaN barrier layer also show higher critical source-drain voltages. Superior stability and robustness performance have been achieved from devices with AlGaN backbarrier epi design grown on n-type SiC substrate. For the onset on any degradation modes the presence of high electrical fields is most decisive for ON- and OFF-state operation conditions. Therefore careful epi design to reduce high electric field is mandatory. It is also shown that epi buffer quality and growth process have a great impact on device robustness. Defects such as point defects and dislocations are assumed to be created initially during stressing and accumulated to larger defect clusters during device stressing. Electroluminescence (EL) measurements were performed to detect early degradation. Extended localized defects are resulting as bright spots at OFF-state conditions in conjunction with a gate leakage increase.

Handbook of RF and Microwave Power Amplifiers

Handbook of RF and Microwave Power Amplifiers
Author: John L. B. Walker
Publisher: Cambridge University Press
Total Pages: 705
Release: 2012
Genre: Technology & Engineering
ISBN: 0521760100


Download Handbook of RF and Microwave Power Amplifiers Book in PDF, Epub and Kindle

This is a one-stop guide for circuit designers and system/device engineers, covering everything from CAD to reliability.

Nitride Semiconductor Technology

Nitride Semiconductor Technology
Author: Fabrizio Roccaforte
Publisher: John Wiley & Sons
Total Pages: 464
Release: 2020-07-17
Genre: Technology & Engineering
ISBN: 3527825258


Download Nitride Semiconductor Technology Book in PDF, Epub and Kindle

The book "Nitride Semiconductor Technology" provides an overview of nitride semiconductors and their uses in optoelectronics and power electronics devices. It explains the physical properties of those materials as well as their growth methods. Their applications in high electron mobility transistors, vertical power devices, LEDs, laser diodes, and vertical-cavity surface-emitting lasers are discussed in detail. The book further examines reliability issues in these materials and puts forward perspectives of integrating them with 2D materials for novel high-frequency and high-power devices. In summary, it covers nitride semiconductor technology from materials to devices and provides the basis for further research.

Power GaN Devices

Power GaN Devices
Author: Matteo Meneghini
Publisher: Springer
Total Pages: 383
Release: 2016-09-08
Genre: Technology & Engineering
ISBN: 3319431994


Download Power GaN Devices Book in PDF, Epub and Kindle

This book presents the first comprehensive overview of the properties and fabrication methods of GaN-based power transistors, with contributions from the most active research groups in the field. It describes how gallium nitride has emerged as an excellent material for the fabrication of power transistors; thanks to the high energy gap, high breakdown field, and saturation velocity of GaN, these devices can reach breakdown voltages beyond the kV range, and very high switching frequencies, thus being suitable for application in power conversion systems. Based on GaN, switching-mode power converters with efficiency in excess of 99 % have been already demonstrated, thus clearing the way for massive adoption of GaN transistors in the power conversion market. This is expected to have important advantages at both the environmental and economic level, since power conversion losses account for 10 % of global electricity consumption. The first part of the book describes the properties and advantages of gallium nitride compared to conventional semiconductor materials. The second part of the book describes the techniques used for device fabrication, and the methods for GaN-on-Silicon mass production. Specific attention is paid to the three most advanced device structures: lateral transistors, vertical power devices, and nanowire-based HEMTs. Other relevant topics covered by the book are the strategies for normally-off operation, and the problems related to device reliability. The last chapter reviews the switching characteristics of GaN HEMTs based on a systems level approach. This book is a unique reference for people working in the materials, device and power electronics fields; it provides interdisciplinary information on material growth, device fabrication, reliability issues and circuit-level switching investigation.

Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion

Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion
Author: Gaudenzio Meneghesso
Publisher: Springer
Total Pages: 242
Release: 2018-05-12
Genre: Technology & Engineering
ISBN: 331977994X


Download Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion Book in PDF, Epub and Kindle

This book demonstrates to readers why Gallium Nitride (GaN) transistors have a superior performance as compared to the already mature Silicon technology. The new GaN-based transistors here described enable both high frequency and high efficiency power conversion, leading to smaller and more efficient power systems. Coverage includes i) GaN substrates and device physics; ii) innovative GaN -transistors structure (lateral and vertical); iii) reliability and robustness of GaN-power transistors; iv) impact of parasitic on GaN based power conversion, v) new power converter architectures and vi) GaN in switched mode power conversion. Provides single-source reference to Gallium Nitride (GaN)-based technologies, from the material level to circuit level, both for power conversions architectures and switched mode power amplifiers; Demonstrates how GaN is a superior technology for switching devices, enabling both high frequency, high efficiency and lower cost power conversion; Enables design of smaller, cheaper and more efficient power supplies.

A compact mode-locked diode laser system for high precision frequency comparison experiments (Band 64)

A compact mode-locked diode laser system for high precision frequency comparison experiments (Band 64)
Author: Heike Christopher
Publisher: Cuvillier Verlag
Total Pages: 206
Release: 2021-04-09
Genre: Science
ISBN: 3736963998


Download A compact mode-locked diode laser system for high precision frequency comparison experiments (Band 64) Book in PDF, Epub and Kindle

Optical frequency combs (OFC) have revolutionized various applications in applied and fundamental sciences that rely on the determination of absolute optical frequencies and frequency differences. The latter requires only stabilization of the spectral distance between the individual comb lines of the OFC, allowing to tailor and reduce system complexity of the OFC generator (OFCG). One such application is the quantum test of the universality of free fall within the QUANTUS experimental series. Within the test, the rate of free fall of two atomic species, Rb and K, in micro-gravity will be compared. The aim of this thesis was the development of a highly compact, robust, and space-suitable diode laser-based OFCG with a mode-locked optical spectrum in the wavelength range around 780 nm. A diode laser-based OFCG was developed, which exceeds the requirements with a spectral bandwidth > 16 nm at 20 dBc, a comb line optical power > 650 nW (at 20 dBc), a pulse repetition rate of 3.4 GHz, and an RF linewidth of the free-running pulse repetition rate < 10 kHz. To realize a proof-of-concept demonstrator module, the diode laser-based OFCG was hybrid-integrated into a space-suitable technology platform that has been developed for future QUANTUS experiments. Proof of sufficient RF stability of the OFCG was provided by stabilizing the pulse repetition rate to an external RF reference. This resulted in a stabilized pulse repetition rate with an RF linewidth smaller than 1.4 Hz (resolution limited), thus exceeding the requirement. The developed diode laser-based OFCG represents an important step towards an improved comparison of the rate of free fall of Rb and K quantum gases within the QUANTUS experiments in micro-gravity.

A deep ultraviolet laser light source by frequency doubling of GaN based external cavity diode laser radiation

A deep ultraviolet laser light source by frequency doubling of GaN based external cavity diode laser radiation
Author: Norman Ruhnke
Publisher: Cuvillier Verlag
Total Pages: 130
Release: 2022-05-13
Genre: Technology & Engineering
ISBN: 373696613X


Download A deep ultraviolet laser light source by frequency doubling of GaN based external cavity diode laser radiation Book in PDF, Epub and Kindle

A compact and portable laser light source emitting in the wavelength range between 210 nm and 230 nm would enable numerous applications outside of laboratory environments, such as sterilization and disinfection of medical equipment, water purification or gas and air analysis using absorption spectroscopy. Such a source is also highly attractive for the identification and quantification of proteins and biomolecules by means of laser-induced fluorescence or Raman spectroscopy. In this thesis, a novel concept to realize such a compact and portable laser light source with low power consumption and an emission around 222 nm is investigated. The developed concept is based on single-pass frequency doubling of a commercially available high-power GaN laser diode emitting in the blue spectral range. Due to the low frequency doubling conversion efficiencies in this wavelength range of about 10-4 W-1, a laser diode with high optical output power above 1 W is required as pump source. Moreover, it has to exhibit narrowband emission in the range of the acceptance bandwidth of the applied nonlinear BBO crystal. Since GaN-based high-power laser diodes typically show broad emission spectra of Δλ = 1…2 nm, stabilizing and narrowing their wavelength by using external wavelength-selective elements is investigated and presented for the first time. With the understanding for the novel concept gained in this work, a compact ultraviolet laser light source was realized. It has a power consumption of less than 10 W and is exceptionally robust due to its immoveable components. The demonstrated output power of 160 μW enables numerous industrial and everyday applications for which previous laser systems have been too complex and overly cost- and energy-intensive.

AlN base layers for UV LEDs

AlN base layers for UV LEDs
Author: Sebastian Walde
Publisher: Cuvillier Verlag
Total Pages: 156
Release: 2021-06-22
Genre: Science
ISBN: 373696451X


Download AlN base layers for UV LEDs Book in PDF, Epub and Kindle

To enable the fabrication of high performance ultraviolet (UV) light-emitting diodes (LEDs) this work aims at improving the quality of AlN base layers on sapphire substrates. The main issues for UV LEDs are still a limited internal quantum efficiency due to a high amount of threading dislocations along with a limited light extraction efficiency due to total internal reflection at the AlN/sapphire interface. Therefore, high-temperature annealing of AlN/sapphire layers and growth on nanopatterned sapphire substrates were comprehensively investigated. High-temperature annealing was applied to AlN layers of different strain and thickness grown by metalorganic vapour phase epitaxy (MOVPE). The threading dislocation density could be successfully reduced by more than one order of magnitude down to 6 × 108 cm-2. Wave optical simulations of UV LEDs on nanopatterned sapphire substrates (NPSS) were conducted and showed a potential increase in light extraction efficiency compared to a planar substrate. The optimized MOVPE growth process on sapphire nanopillars and sapphire nanoholes resulted in a fully coalesced and atomically smooth AlN surface. The threading dislocation density was reduced to 1 ×109 cm-2 for AlN on both nanopillars and nanoholes. UVC LEDs emitting at 265 nm wavelength were grown on top of the developed templates. Increased internal efficiency was obtained by reduced dislocation density and more efficient light extraction was achieved on NPSS in case of a transparent heterostructure and reflective contacts. Thus, the developed templates yield considerable improvement in light output compared to conventional templates.