Advances in composite wind turbine blades: A comparative study

Advances in composite wind turbine blades: A comparative study
Author: Adam Chehouri
Publisher: diplom.de
Total Pages: 82
Release: 2014-03-01
Genre: Science
ISBN: 395489730X


Download Advances in composite wind turbine blades: A comparative study Book in PDF, Epub and Kindle

In the wind industry, the current trend is towards building larger and larger turbines. This presents additional structural challenges and requires blade materials that are both lighter and stiffer than the ones presently used. This study is aimed to aid the work of designing new wind turbine blades by providing a comparative study of different composite materials. A coupled Finite-Element-Method (FEM) - Blade Element Momentum (BEM) code was used to simulate the aerodynamic forces subjected on the blade. For this study, the finite element study was conducted on the Static Structural Workbench of ANSYS, as for the geometry of the blade it was imported from a previous study prepared by Cornell University. Confirmation of the performance analysis of the chosen wind turbine blade is presented and discussed including the generated power, tip deflection, thrust and tangential force for a steady flow of 8m/s. A homogenization method was applied to derive the mechanical properties and ultimate strengths of the composites. The Tsai-Hill and Hoffman failure criterions were both conducted to the resulting stresses and shears for each blade composite material structure to determine the presence of static rupture. A progressive fatigue damage model was conducted to simulate the fatigue behavior of laminated composite materials, an algorithm developed by Shokrieh.

Advances in Composite Wind Turbine Blades: A Comparative Study

Advances in Composite Wind Turbine Blades: A Comparative Study
Author: Adam Chehouri
Publisher: Anchor Academic Publishing (aap_verlag)
Total Pages: 85
Release: 2014-03-19
Genre: Business & Economics
ISBN: 3954892308


Download Advances in Composite Wind Turbine Blades: A Comparative Study Book in PDF, Epub and Kindle

In the wind industry, the current trend is towards building larger and larger turbines. This presents additional structural challenges and requires blade materials that are both lighter and stiffer than the ones presently used. This study is aimed to aid the work of designing new wind turbine blades by providing a comparative study of different composite materials. A coupled Finite-Element-Method (FEM) - Blade Element Momentum (BEM) code was used to simulate the aerodynamic forces subjected on the blade. For this study, the finite element study was conducted on the Static Structural Workbench of ANSYS, as for the geometry of the blade it was imported from a previous study prepared by Cornell University. Confirmation of the performance analysis of the chosen wind turbine blade is presented and discussed including the generated power, tip deflection, thrust and tangential force for a steady flow of 8m/s. A homogenization method was applied to derive the mechanical properties and ultimate strengths of the composites. The Tsai-Hill and Hoffman failure criterions were both conducted to the resulting stresses and shears for each blade composite material structure to determine the presence of static rupture. A progressive fatigue damage model was conducted to simulate the fatigue behavior of laminated composite materials, an algorithm developed by Shokrieh.

A Comparative Study of Static and Fatigue Behaviors for Various Composite Orthotropic Properties for a Wind Turbine Using a Coupled FEM-BEM Method

A Comparative Study of Static and Fatigue Behaviors for Various Composite Orthotropic Properties for a Wind Turbine Using a Coupled FEM-BEM Method
Author: Adam Chehouri
Publisher: GRIN Verlag
Total Pages: 72
Release: 2014-01-13
Genre: Technology & Engineering
ISBN: 3656572542


Download A Comparative Study of Static and Fatigue Behaviors for Various Composite Orthotropic Properties for a Wind Turbine Using a Coupled FEM-BEM Method Book in PDF, Epub and Kindle

Master's Thesis from the year 2013 in the subject Engineering - Mechanical Engineering, grade: 4.06/4.5 GPa, , language: English, abstract: In the wind industry, the current trend is towards building larger and larger turbines. This presents additional structural challenges and requires blade materials that are both lighter and stiffer than the ones presently used. This work is aimed to aid the work of designing new wind turbine blades by providing a comparative study of different composite materials. A coupled Finite-Element-Method (FEM) - Blade Element Momentum (BEM) code was used to simulate the aerodynamic forces subjected on the blade. The developed BEM code was written using LabView allowing an iterative numerical approach solver taking into the consideration the unsteady aerodynamic effects and off –design performance issues such as Tip Loss, Hub Loss and Turbulent Wake State therefore developing a more rational aerodynamic model. For this thesis, the finite element study was conducted on the Static Structural Workbench of ANSYS, as for the geometry of the blade it was imported from a previous study prepared by Cornell University. Confirmation of the performance analysis of the chosen wind turbine blade are presented and discussed blade including the generated power, tip deflection, thrust and tangential force for a steady flow of 8m/s. The elastic and ultimate strength properties were provided by Hallal et al. The Tsai- Hill and Hoffman failure criterions were both conducted to the resulting stresses and shears for each blade composite material structure to determine the presence of static rupture. A progressive fatigue damage model was conducted to simulate the fatigue behavior of laminated composite materials, an algorithm developed by Shokrieh. It is concluded that with respect to a material blade design cycle, the coupling between a finite element package and blade element and momentum code under steady and static conditions can be useful. Especially when an integration between this coupled approach and a dynamic simulation tool could be established, a more advanced flexible blade design can be then analyzed for a novel generation of more flexible wind turbine blades.

Advances in Wind Turbine Blade Design and Materials

Advances in Wind Turbine Blade Design and Materials
Author: Povl Brondsted
Publisher: Elsevier
Total Pages: 485
Release: 2013-10-31
Genre: Technology & Engineering
ISBN: 0857097288


Download Advances in Wind Turbine Blade Design and Materials Book in PDF, Epub and Kindle

Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance of wind turbine blades. The final part of the book describes advances in wind turbine blade materials, development and testing, including biobased composites, surface protection and coatings, structural performance testing and the design, manufacture and testing of small wind turbine blades. Advances in wind turbine blade design and materials offers a comprehensive review of the recent advances and challenges encountered in wind turbine blade materials and design, and will provide an invaluable reference for researchers and innovators in the field of wind energy production, including materials scientists and engineers, wind turbine blade manufacturers and maintenance technicians, scientists, researchers and academics. Reviews the design and functionality of wind turbine rotor blades Examines the requirements and challenges for composite materials used in both current and future designs of wind turbine blades Provides an invaluable reference for researchers and innovators in the field of wind energy production

Advances in Wind Turbine Blade Design and Materials

Advances in Wind Turbine Blade Design and Materials
Author: Povl Brondsted
Publisher: Woodhead Publishing
Total Pages: 516
Release: 2023-01-14
Genre: Technology & Engineering
ISBN: 0081030088


Download Advances in Wind Turbine Blade Design and Materials Book in PDF, Epub and Kindle

Advances in Wind Turbine Blade Design and Materials, Second Edition, builds on the thorough review of the design and functionality of wind turbine rotor blades and the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Reviews the design and functionality of wind turbine rotor blades Examines the requirements and challenges for composite materials used in both current and future designs of wind turbine blades Provides an invaluable reference for researchers and innovators in the field of wind

Advances in wind turbine blade design and materials

Advances in wind turbine blade design and materials
Author: R.P.L. Nijssen
Publisher: Elsevier Inc. Chapters
Total Pages: 43
Release: 2013-10-31
Genre: Technology & Engineering
ISBN: 0128089172


Download Advances in wind turbine blade design and materials Book in PDF, Epub and Kindle

Composites have been the material of choice for wind turbine blade construction for several decades. This chapter explains why. It also shows how wind turbine blade materials and our understanding of their fatigue behaviour have developed recently, and the gaps that still exist in the knowledge. The chapter discusses why fatigue is a predominant design driver for wind turbine blades. The main structural elements of the blade (load bearing components and aerodynamic shell) are considered in terms of material and design requirements, and fundamental research questions are addressed. Finally, there is a comment on current and future trends, as well as a list of recommended reading.

Advances in wind turbine blade design and materials

Advances in wind turbine blade design and materials
Author: D.J. Lekou
Publisher: Elsevier Inc. Chapters
Total Pages: 41
Release: 2013-10-31
Genre: Technology & Engineering
ISBN: 0128089210


Download Advances in wind turbine blade design and materials Book in PDF, Epub and Kindle

The chapter discusses the topic of probabilistic analysis of wind turbine blades. First, structural analysis models, the definition of ‘failure’ and the treatment of random variables will be explored, focusing on the challenges involved in a probabilistic design depending on the choices made during each step. Next, the various probabilistic methods (Monte Carlo method, first-order reliability method, Edgeworth expansion method, response surface method) will be described. Issues arising out of the use of composite material structures, in applications such as wind turbine blades, as well as other aspects relating to wind energy applications will be highlighted, and techniques will be discussed through examples.

Advances in wind turbine blade design and materials

Advances in wind turbine blade design and materials
Author: F. Mølholt Jensen
Publisher: Elsevier Inc. Chapters
Total Pages: 36
Release: 2013-10-31
Genre: Technology & Engineering
ISBN: 0128089121


Download Advances in wind turbine blade design and materials Book in PDF, Epub and Kindle

An overview of the current and future trends in wind turbine blade structural design process is presented. The main design principles and failure mechanisms of blades in operation are assessed and explained through an industry point of view, in a realistic manner. A number of failure modes which are not addressed sufficiently in the certificate guidelines are presented. An example on how to use the new design philosophy is presented. The manufactured prototype is a 44m long load carrying spar and the weight is reduced by 40%.

Advances in wind turbine blade design and materials

Advances in wind turbine blade design and materials
Author: P.D. Clausen
Publisher: Elsevier Inc. Chapters
Total Pages: 28
Release: 2013-10-31
Genre: Technology & Engineering
ISBN: 0128089245


Download Advances in wind turbine blade design and materials Book in PDF, Epub and Kindle

Small wind turbine blades share a number of features with large blades, but have some important differences. The two main differences are their much higher rotational speed, which causes more fatigue cycles and higher yaw moments, and their operation at low Reynolds number, which means that thick aerofoil sections cannot be used near the root. This chapter discusses the design challenges arising from these differences, the materials commonly used for blade manufacture, and the fatigue testing of small blades. The use of timber is highlighted for very small blades, and fibre-reinforced composite manufacture of larger ones is discussed in terms of sustainability, conformity of manufactured shape, and fatigue behaviour.

Advances in wind turbine blade design and materials

Advances in wind turbine blade design and materials
Author: L. MISHNAEVSKY
Publisher: Elsevier Inc. Chapters
Total Pages: 33
Release: 2013-10-31
Genre: Technology & Engineering
ISBN: 0128089202


Download Advances in wind turbine blade design and materials Book in PDF, Epub and Kindle

An overview of the micromechanics of materials methods and approaches that can be used for the modelling of wind turbine blade composites is given in this chapter. Using the various modelling methods reviewed here, the strength, stiffness and lifetime of composite materials can be predicted and the suitability of different groups of materials for applications in wind turbine blades can be analysed. The effects of interface and matrix properties, fibre clustering and nanoreinforcement on the strength and lifetime of composites are studied in a number of simulations, and some examples of the analysis of microstructural effects on the strength and fatigue life of composites are provided.