Advancement of Shock Capturing Computational Fluid Dynamics Methods

Advancement of Shock Capturing Computational Fluid Dynamics Methods
Author: Keiichi Kitamura
Publisher: Springer Nature
Total Pages: 136
Release: 2020-10-31
Genre: Science
ISBN: 9811590117


Download Advancement of Shock Capturing Computational Fluid Dynamics Methods Book in PDF, Epub and Kindle

This book offers a compact primer on advanced numerical flux functions in computational fluid dynamics (CFD). It comprehensively introduces readers to methods used at the forefront of compressible flow simulation research. Further, it provides a comparative evaluation of the methods discussed, helping readers select the best numerical flux function for their specific needs. The first two chapters of the book reviews finite volume methods and numerical functions, before discussing issues commonly encountered in connection with each. The third and fourth chapter, respectively, address numerical flux functions for ideal gases and more complex fluid flow cases— multiphase flows, supercritical fluids and magnetohydrodynamics. In closing, the book highlights methods that provide high levels of accuracy. The concise content provides an overview of recent advances in CFD methods for shockwaves. Further, it presents the author’s insights into the advantages and disadvantages of each method, helping readers implement the numerical methods in their own research.

Adaptive High-order Methods in Computational Fluid Dynamics

Adaptive High-order Methods in Computational Fluid Dynamics
Author: Z. J. Wang
Publisher: World Scientific
Total Pages: 471
Release: 2011
Genre: Science
ISBN: 9814313181


Download Adaptive High-order Methods in Computational Fluid Dynamics Book in PDF, Epub and Kindle

This book consists of important contributions by world-renowned experts on adaptive high-order methods in computational fluid dynamics (CFD). It covers several widely used, and still intensively researched methods, including the discontinuous Galerkin, residual distribution, finite volume, differential quadrature, spectral volume, spectral difference, PNPM, and correction procedure via reconstruction methods. The main focus is applications in aerospace engineering, but the book should also be useful in many other engineering disciplines including mechanical, chemical and electrical engineering. Since many of these methods are still evolving, the book will be an excellent reference for researchers and graduate students to gain an understanding of the state of the art and remaining challenges in high-order CFD methods.

Shock Fitting

Shock Fitting
Author: Marcello Onofri
Publisher: Springer
Total Pages: 234
Release: 2017-11-18
Genre: Science
ISBN: 3319684272


Download Shock Fitting Book in PDF, Epub and Kindle

This book describes the revolutionary capabilities of new shock fitting algorithms; a great improvement in computational fluid dynamics (CFD) for high-speed numerical simulations. Shock fitting methods provide a solution to the current difficulties and inaccuracies in shock-capturing approaches. This work traces the evolution of shock-fitting methods, from the pioneering methods based on the structured grids (boundary and floating shock-fitting) to recent developments on unstructured grids, illustrating algorithmic details, significant applications and potential developments. Also, to celebrate the centenary birth of the father of shock-fitting techniques, the book also includes a tribute to Gino Moretti, as well as his unpublished manuscript. This book will appeal to professionals, researchers, and graduate students in the field of CFD.

Computational Fluid Dynamics

Computational Fluid Dynamics
Author: John F. Wendt
Publisher: Springer Science & Business Media
Total Pages: 299
Release: 2013-03-09
Genre: Science
ISBN: 3662113503


Download Computational Fluid Dynamics Book in PDF, Epub and Kindle

This book is an outgrowth of a von Kannan Institute Lecture Series by the same title first presented in 1985 and repeated with modifications in succeeding years. The objective, then and now, was to present the subject of computational fluid dynamics (CFD) to an audience unfamiliar with all but the most basic aspects of numerical techniques and to do so in such a way that the practical application ofCFD would become clear to everyone. Remarks from hundreds of persons who followed this course encouraged the editor and the authors to improve the content and organization year by year and eventually to produce the present volume. The book is divided into two parts. In the first part, John Anderson lays out the subject by first describing the governing equations offluid dynamics, concentration on their mathematical properties which contain the keys to the choice of the numerical approach. Methods of discretizing the equations are discussed next and then transformation techniques and grids are also discussed. This section closes with two examples of numerical methods which can be understood easily by all concerned: source and vortex panel methods and the explicit method. The second part of the book is devoted to four self-contained chapters on more advanced material: Roger Grundmann treats the boundary layer equations and methods of solution; Gerard Degrez treats implicit time-marching methods for inviscid and viscous compressible flows, and Eric Dick treats, in two separate articles, both finite-volume and finite-element methods.

The Finite Volume Method in Computational Fluid Dynamics

The Finite Volume Method in Computational Fluid Dynamics
Author: F. Moukalled
Publisher: Springer
Total Pages: 799
Release: 2015-08-13
Genre: Technology & Engineering
ISBN: 3319168746


Download The Finite Volume Method in Computational Fluid Dynamics Book in PDF, Epub and Kindle

This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.

Computational Fluid Dynamics

Computational Fluid Dynamics
Author: John Wendt
Publisher: Springer Science & Business Media
Total Pages: 333
Release: 2008-11-04
Genre: Technology & Engineering
ISBN: 3540850554


Download Computational Fluid Dynamics Book in PDF, Epub and Kindle

Computational Fluid Dynamics: An Introduction grew out of a von Karman Institute (VKI) Lecture Series by the same title ?rst presented in 1985 and repeated with modi?cations every year since that time. The objective, then and now, was to present the subject of computational ?uid dynamics (CFD) to an audience unfamiliar with all but the most basic numerical techniques and to do so in such a way that the practical application of CFD would become clear to everyone. A second edition appeared in 1995 with updates to all the chapters and when that printing came to an end, the publisher requested that the editor and authors consider the preparation of a third edition. Happily, the authors received the request with enthusiasm. The third edition has the goal of presenting additional updates and clari?cations while preserving the introductory nature of the material. The book is divided into three parts. John Anderson lays out the subject in Part I by ?rst describing the governing equations of ?uid dynamics, concentrating on their mathematical properties which contain the keys to the choice of the numerical approach. Methods of discretizing the equations are discussed and transformation techniques and grids are presented. Two examples of numerical methods close out this part of the book: source and vortex panel methods and the explicit method. Part II is devoted to four self-contained chapters on more advanced material. Roger Grundmann treats the boundary layer equations and methods of solution.

Recent Advances in Computational Fluid Dynamics

Recent Advances in Computational Fluid Dynamics
Author: C.C. Chao
Publisher: Springer Science & Business Media
Total Pages: 537
Release: 2013-03-07
Genre: Science
ISBN: 3642837336


Download Recent Advances in Computational Fluid Dynamics Book in PDF, Epub and Kindle

From the preface: Fluid dynamics is an excellent example of how recent advances in computational tools and techniques permit the rapid advance of basic and applied science. The development of computational fluid dynamics (CFD) has opened new areas of research and has significantly supplemented information available from experimental measurements. Scientific computing is directly responsible for such recent developments as the secondary instability theory of transition to turbulence, dynamical systems analyses of routes to chaos, ideas on the geometry of turbulence, direct simulations of turbulence, three-dimensional full-aircraft flow analyses, and so on. We believe that CFD has already achieved a status in the tool-kit of fluid mechanicians equal to that of the classical scientific techniques of mathematical analysis and laboratory experiment.

The Extraction of Shock Waves and Separation and Attachment Lines from Computational Fluid Dynamics Simulations Using Subjective Logic

The Extraction of Shock Waves and Separation and Attachment Lines from Computational Fluid Dynamics Simulations Using Subjective Logic
Author: Matthew C. Lively
Publisher:
Total Pages: 143
Release: 2012
Genre: Electronic dissertations
ISBN:


Download The Extraction of Shock Waves and Separation and Attachment Lines from Computational Fluid Dynamics Simulations Using Subjective Logic Book in PDF, Epub and Kindle

The advancement of computational fluid dynamics to simulate highly complex fluid flow situations have allowed for simulations that require weeks of computation using expensive high performance clusters. These simulations often generate terabytes of data and hinder the design process by greatly increasing the post-processing time. This research discusses a method to extract shock waves and separation and attachment lines as the simulation is calculating and as a post-processing step. Software agents governed by subjective logic were used to make decisions about extracted features in converging and converged data sets. Two different extraction algorithms were incorporated for shock waves and separation and attachment lines and were tested on four different simulations. A supersonic ramp simulation showed two shock waves at 10% of convergence, but did not reach their final spatial locations until 85% convergence. A similar separation and attachment line analysis was performed on a cylinder in a cross flow simulation. The cylinder separation and attachment lines were within 5% of their final spatial locations at 10% convergence, and at 85% convergence, much of the cylinder and trailing separation and attachment lines showed probability expectation values of approximately 0.90 - 1.00. An Onera M6 wing simulation was used to investigate the belief tuples of the two separate shock waves at full convergence. Probability expectation values of approximately 0.90 - 1.00 were displayed within the two shock waves because they are strong shock waves and because they met the physical requirements of shock waves. A separation and attachment line belief tuple analysis was also performed on a delta wing simulation. The forward portions of these lines showed probability expectation values of approximately 0.90 - 1.00, but dropped to approximately 0.60 - 0.75 as a consequence of their respective vortices breaking down and losing their strength. Similar to shock waves, high probability expectation values meant the separation and attachment lines were strong and physically met separation and attachment line physics. The subjective logic process presented in this research was able to determine which shock waves and separation and attachment lines were most probable, making it easier to view and further investigate these important features.

Advances in Environmental Fluid Mechanics

Advances in Environmental Fluid Mechanics
Author: Dragutin T. Mihailovic
Publisher: World Scientific
Total Pages: 381
Release: 2010
Genre: Science
ISBN: 9814293008


Download Advances in Environmental Fluid Mechanics Book in PDF, Epub and Kindle

Environmental fluid mechanics (EFM) is the scientific study of transport, dispersion and transformation processes in natural fluid flows on our planet Earth, from the microscale to the planetary scale. This book brings together scientists and engineers working in research institutions, universities and academia, who engage in the study of theoretical, modeling, measuring and software aspects in environmental fluid mechanics. It provides a forum for the participants, and exchanges new ideas and expertise through the presentations of up-to-date and recent overall achievements in this field.