ASME 68-APM-M

ASME 68-APM-M
Author: W. F. Walker
Publisher:
Total Pages: 9
Release: 1968
Genre: Blast effect
ISBN:


Download ASME 68-APM-M Book in PDF, Epub and Kindle

Journal of Applied Mechanics

Journal of Applied Mechanics
Author:
Publisher:
Total Pages: 884
Release: 1968
Genre: Mechanical engineering
ISBN:


Download Journal of Applied Mechanics Book in PDF, Epub and Kindle

Publishes original research in all branches of mechanics including aerodynamics; aeroelasticity; boundary layers; computational mechanics; constitutive modeling of materials; dynamics; elasticity; flow and fracture; heat transfer; hydraulics; impact; internal flow; mechanical properties of materials; micromechanics; plasticity; stress analysis; structures; thermodynamics; turbulence; vibration; and wave propagation.

Shock Wave-Boundary-Layer Interactions

Shock Wave-Boundary-Layer Interactions
Author: Holger Babinsky
Publisher: Cambridge University Press
Total Pages: 481
Release: 2011-09-12
Genre: Technology & Engineering
ISBN: 1139498649


Download Shock Wave-Boundary-Layer Interactions Book in PDF, Epub and Kindle

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.

Numerical Simulations of the Shock Wave-boundary Layer Interactions

Numerical Simulations of the Shock Wave-boundary Layer Interactions
Author: Ismaïl Ben Hassan Saïdi
Publisher:
Total Pages: 0
Release: 2019
Genre:
ISBN:


Download Numerical Simulations of the Shock Wave-boundary Layer Interactions Book in PDF, Epub and Kindle

Situations where an incident shock wave impinges upon a boundary layer are common in the aeronautical and spatial industries. Under certain circumstances (High Mach number, large shock angle...), the interaction between an incident shock wave and a boundary layer may create an unsteady separation bubble. This bubble, as well as the subsequent reflected shock wave, are known to oscillate in a low-frequency streamwise motion. This phenomenon, called the unsteadiness of the shock wave boundary layer interaction (SWBLI), subjects structures to oscillating loads that can lead to damages for the solid structure integrity.The aim of the present work is the unsteady numerical simulation of (SWBLI) in order to contribute to a better understanding of the SWBLI unsteadiness and the physical mechanism causing these low frequency oscillations of the interaction zone.To perform this study, an original numerical approach is used. The one step Finite Volume approach relies on the discretization of the convective fluxes of the Navier Stokes equations using the OSMP scheme developed up to the 7-th order both in space and time, the viscous fluxes being discretized using a standard centered Finite-Difference scheme. A Monotonicity-Preserving (MP) constraint is employed as a shock capturing procedure. The validation of this approach demonstrates the correct accuracy of the OSMP scheme to predict turbulent features and the great efficiency of the MP procedure to capture discontinuities without spoiling the solution and with an almost negligible additional cost. It is also shown that the use of the highest order tested of the OSMP scheme is relevant in term of simulation time and accuracy compromise. Moreover, an order of accuracy higher than 2-nd order for approximating the diffusive fluxes seems to have a negligible influence on the solution for such relatively high Reynolds numbers.By simulating the 3D unsteady interaction between a laminar boundary layer and an incident shock wave, we suppress the suspected influence of the large turbulent structures of the boundary layer on the SWBLI unsteadiness, the only remaining suspected cause of unsteadiness being the dynamics of the separation bubble. Results show that only the reattachment point oscillates at low frequencies characteristic of the breathing of the separation bubble. The separation point of the recirculation bubble and the foot of the reflected shock wave have a fixed location along the flat plate with respect to time. It shows that, in this configuration, the SWBLI unsteadiness is not observed.In order to reproduce and analyse the SWBLI unsteadiness, the simulation of a shock wave turbulent boundary layer interaction (SWTBLI) is performed. A Synthetic Eddy Method (SEM), adapted to compressible flows, has been developed and used at the inlet of the simulation domain for initiating the turbulent boundary layer without prohibitive additional computational costs. Analyses of the results are performed using, among others, the snapshot Proper Orthogonal Decomposition (POD) technique. For this simulation, the SWBLI unsteadiness has been observed. Results suggest that the dominant flapping mode of the recirculation bubble occurs at medium frequency. These cycles of successive enlargement and shrinkage of the separated zone are shown to be irregular in time, the maximum size of the recirculation bubble being submitted to discrepancies between successive cycles. This behaviour of the separation bubble is responsible for a low frequency temporal modulation of the amplitude of the separation and reattachment point motions and thus for the low frequency breathing of the separation bubble. These results tend to suggest that the SWBLI unsteadiness is related to this low frequency dynamics of the recirculation bubble; the oscillations of the reflected shocks foot being in phase with the motion of the separation point.

Environmental Enginering Abstracts

Environmental Enginering Abstracts
Author: Sanida Laboratories. Simulated Environments Information Center
Publisher:
Total Pages: 40
Release: 1968
Genre: Buildings
ISBN:


Download Environmental Enginering Abstracts Book in PDF, Epub and Kindle

Transition Location Effect on Shock Wave Boundary Layer Interaction

Transition Location Effect on Shock Wave Boundary Layer Interaction
Author: Piotr Doerffer
Publisher: Springer Nature
Total Pages: 540
Release: 2020-07-30
Genre: Technology & Engineering
ISBN: 3030474615


Download Transition Location Effect on Shock Wave Boundary Layer Interaction Book in PDF, Epub and Kindle

This book presents experimental and numerical findings on reducing shock-induced separation by applying transition upstream the shock wave. The purpose is to find out how close to the shock wave the transition should be located in order to obtain favorable turbulent boundary layer interaction. The book shares findings obtained using advanced flow measurement methods and concerning e.g. the transition location, boundary layer characteristics, and the detection of shock wave configurations. It includes a number of experimental case studies and CFD simulations that offer valuable insights into the flow structure. It covers RANS/URANS methods for the experimental test section design, as well as more advanced techniques, such as LES, hybrid methods and DNS for studying the transition and shock wave interaction in detail. The experimental and numerical investigations presented here were conducted by sixteen different partners in the context of the TFAST Project. The general focus is on determining if and how it is possible to improve flow performance in comparison to laminar interaction. The book mainly addresses academics and professionals whose work involves the aerodynamics of internal and external flows, as well as experimentalists working with compressible flows. It will also be of benefit for CFD developers and users, and for students of aviation and propulsion systems alike.

NASA Technical Note

NASA Technical Note
Author: United States. National Aeronautics and Space Administration
Publisher:
Total Pages: 1000
Release: 1971
Genre: Aeronautics
ISBN:


Download NASA Technical Note Book in PDF, Epub and Kindle